Metaheuristics as Generic Search Procedures for
Constraint Programming

Georg Ringwelski!, Ole Boysen? and Kathleen Steinhofel?

1 4C, UCC, Cork, Ireland. g.ringwelski@4c.ucc.ie
2 Fraunhofer FIRST, Kekuléstrafie 7, 12489 Berlin, Germany.
boysen|kathleen@first.fhg.de

Abstract. We introduce a generic approach to incorporate metaheuris-
tic search procedures into constraint programming. This allows the in-
dividual combination of both paradigms enabling us to exploit their re-
spective advantages. Arbitrary constraint satisfaction and optimization
problems can be solved from a declarative constraint model by means
of propagation and both (discrete and heuristic) search paradigms. We
show the run time generation of penalty functions for the supplementary
algorithms and give an overview of our current results and the different
search components.

1 Integrating Metaheuristics and Constraint
Programming

This paper addresses a generic scheme for solving constraint satisfaction prob-
lems with constraint programming (CP) and integrated metaheuristics (MH).
During the last decade many propagation methods have been developed to speed
up the complete search performed by constraint programming. For problems
where complete search is inefficient such as real-life combinatorial optimization
problems recent research has been directed to metaheuristics, a class of general,
non-deterministic optimization algorithms comprising local search procedures
like Simulated Annealing and Tabu Search as well as constructive heuristics
like Genetic Algorithms and others. To take advantage of thoroughly developed
propagation procedures of constraint programming and local search methods we
propose a hybrid system that incorporates both in a generic manner. Constraint
satisfaction or optimization problems are modelled, as in CP, using variables and
a conjunction of constraints or optimization goals while the algorithm to solve
the problem can be individually defined in every application. Metaheuristics as
well as complete labeling algorithms can be used to cooperatively find variable
assignments in different parts of the search space. We thus extend constraint
programming with new generic search algorithms that use a set of variables and

This work was partially funded by the Embark Initiative of the Irish Research Coun-
cil for Science, Engineering and Technology under grant PD/2002/21. The Cork
Constraint Computation Center is supported from Science Foundation Ireland un-
der Grant 00/PL.1/C075.

constraints as input and produce a variable assignment as output. In difference
to standard labeling this assignment does not have to be a solution to the global
CSP such that our approach can also be used for over-constrained problems. On
the other hand additional optimization criteria can be passed to the metaheuris-
tics to find “good” solutions in under-constrained or optimization problems.

Approaches to combine propagation and local search have been presented e.g.
in [5, 10, 13, 11]. In the latter paper local probing is used to utilize simulated
annealing subsequently in a global complete search procedure. This constitutes
one possible cooperation of complete and local search as we propose it in this
paper. Moreover, propagation methods are often used to guide local search proce-
dures, cf. [12, 10, 15]. The latter paper presents a simulated annealing procedure
that takes advantage of propagation to avoid unfeasible variable assignments
and therefore it performs optimization in the feasible search space only. In our
approach we can also perform such pruning of the neighborhood during local
search by using so-called propagators. These derive values for some variables
from the current assignment of others.

Most of the proposed approaches have been tailored for the considered prob-
lem setting, e.g. [11, 15]. Instead of providing a generic interface to CSP mod-
elling, they use domain specific implementations to compute the neighborhood
and penalty of current variable assignments. Thus, they cannot be considered as
general search procedures for CSP to be used within constraint programming.
We propose a general, domain independent, generic scheme to combine con-
straint programming with local search. Our system enables metaheuristics and
local search procedures to be used in the same way as classical labelling pro-
cedures during the incremental constraint processing of CP. Since the interplay
is not predefined it is possible to obtain efficient heuristics to solve constraint
satisfaction/optimization problems by passing all necessary information to the
MH. Therefore, we extend the classical constraint programming while preserving
all features of local search.

2 Runtime Generation of Penalty Functions

Our approach to a hybrid constraint processing system is the integration of
metaheuristics as labeling procedures in incremental constraint programming
systems. A CSP can be iteratively modelled by variables with associated domains
and constraints in a programming system that is based on the CLP scheme [8]
such as CHIP od SICStus Prolog. To find solutions to the thus defined CSP we
propose the use of a non-deterministic search algorithm instead of backtracking
and labelling. In order to remain the incremental handling of knowledge in the
CP system, the search algorithm has to adapt itself to changing models. In
difference to other approaches that use metaheuristics for constraint satisfaction
(e.g. [2]), we do not define penalty functions for the metaheuristic in compile
time, but generate them dynamically during runtime.

In a constraint logic programming system for example, we allow thus for the
use of local search for dynamically defined (sub-)problems of arbitrary CSPs. In

one of our current projects with a major German railway company, we investi-
gated that the best solutions for very large CSPs can be found by first running
Simulated Annealing for the subproblem that contains all the information to be
optimized and then using the efficient and powerful (forward-checking) propa-
gation of CLP to make the remaining arithmetic evaluations. In order to allow
this generic integration of MH and CP we use as a basic penalty function a total
mapping of variable assignments to integers, representing the number of violated
constraints.

Definition 1. Let a CSP = (V,C) be given, where C = {c1,...,cm} is a set of
constraints that have as actual parameters a list of variables® v(c;) = (vy, ..., v,)CV
and a list of constants fc(ci)gD of a previously defined constraint domain D. The
variables are associated to their domains 6(v;) C D and the declarative seman-
tics of every constraint is given by the relation =C C x P(d(v1) X ... X 6(vy,) X
D x ... x D). We define the basic penalty function ¢g: (V — D) = N, as a
mapping of variable assignments to a natural number such that ¢o(ass) := |{c €
C | ck ({(ass(vy), ...,ass(vy)) o k(c)) with (v, ...,v,) = v(c)}|.

This basic target function returns the number of violated constraints, as re-
ferred to MAX-CSP in [6]. In Section 4 we will discuss more specialized penalty
functions that support optimization and soft constraints. However, this basic
target function has proven to be quite effective when used with Simulated An-
nealing, i.e. Codognet and Diaz used it when obtaining immense performance
for some benchmark CSPs in [2].

The main contribution of this paper is a method to generate such penalty
functions for arbitrary sets of variables and constraints. In our setting, the MH
uses a CSP as input and evaluates a variable assignment as output. From the
input a penalty function is generated that is used by the search algorithm to
find “good” variable assignments, which are in most cases solutions of the CSP.
The challenge of this approach is to find an efficient algorithm that encodes a
CSP from a set of variables and constraints to have as little system overhead as
possible. This is a non-trivial problem due to the complex structure of constraint
networks (hyper graphs) and the requirement to encode well-defined (Ve € C :
v(c)CV) CSPs. We developed and implemented an algorithm for this encoding
and the penalty function generation that has a time (and memory) complexity
that is linear with the size of the CSP. In Figure 1 we show the absolute values
for the computation overhead in some benchmark programs, which is negligible
compared to the overall runtime of search.

We start from a constraint program that defines a set of constraints C' and
a set of variables V in a constraint domain D (ie. Yv; € V : §(v;) C D).
Furthermore the set of allowed constraints in D must be specified as the set AC.

Ezample 1. For example in clp(FD) [4] the constraint domain is D = Z such
that allowed constraints AC' are (among others) mathematical relations and the

3 With € we denote the inclusion of list elements in sets: (v1,...,v,)CV < Vi €
{1,.,n}:v; € V.

75-queens with Tabu Search
Golmb-rulers-10 with Tabu Search

" Belipaeand egendr.eSP
Define CSP penalty function

Ecode CSP for
penalty function
generation

Search

Search

Fig. 1. The runtime consumption of the different tasks to solve CSPs with Tabu Search
in CHIP.

pertinent global constraints. The constraint X < 5 is then represented by the
allowed constraint type ' <' together with its associated variables v(X < 5) =
(X) and constant arguments k(X < 5) = (5) as actual parameters.

A CSP ({v1,...,vn},{c1, .-, ¢ }) in such a constraint program with variables
{v1,...,vn} CV and constraints {ci,...,cn} C C is encoded in two steps:

1. Traverse the variables {v1,...,v,} to
(a) create a list of variable domains DL = (§(v1), ..., 0(vn))
(b) create a partial mapping of variables to indices in DL:

i, if1 <3<
02 Vs {ir, ..., in} with o(v;) = {Z]’ Hiz)=m

1, otherwise.
by a pointwise definition.
2. Traverse the constraints {cy,...,cn} to create a list CL of pairs (p(c), a(c))
for every c € {c1, ..., cm } with v(c)C{v1, ..., v, }, by using
(a) a bijective mapping p : AC — N to encode the kind of ¢,
(b) a function a : C — P({i1,...,in} U D) that creates a list of actual
parameters for each constraint, such that a(c) = o'(v(c)) o k(c) with
& (V] cy0))) = 01,y 01)),
(c) the domain of ¢ to decide, if v(c)C{v1,...,v,}:
Ve € {ctyoyem} : (Vo € v(c) : t(v) # L) = ((p(c),a(c)) € CL)

Ezample 2. Let the constraint encoding p = {(<,1), (alldif f,2)} be given in a
clp(FD) system. Let further be the variables {v;,v2,v3} be defined in a CLP pro-
gram such that their domains are §(v;) = {0, ...,i}. The CSP ({v1,v2,v3}, {v2 <
v1 A alldif f([v2,v1,3,v3,5])} will then be encoded by our algorithm as DL =
<{07 l}a {07 1, 2}7 {01 1,2, 3}) and CL = <(17 <i2a il))a (27 <i27 11,3, 13, 5>)> by travers-
ing the constraints and the variables only once.

The metaheuristic or local search algorithm is then using the list DL of
variable domains to select values for solution transitions. An initial variable

assignment (in terms of CP) respectively solution (in terms of MH) can be
defined as a mapping of variables to randomly selected values from every domain:

solo(vi) = d; with d; € (5(1},) (1)

During search, any of these values can be modified to traverse the search space
and eventually find improved solutions w.r.t. to the applied penalty function.
The neighborhood function used defines which variable and which new value for
it are selected during this non-deterministic search process.

The basic penalty function (Def. 1) for arbitrary CSPs uses a cost function
¢, for each constraint ¢ and combines all of these functions from the list C'L by
summation into a single penalty function during runtime:

Po(sol) = = Pe(a(c), sol) (2)

The cost function ¢, for every constraint is created during compile time. This
function uses the constants x(c) and the variable indices a'(v(c)) to select the
current values from sol to evaluate the total number of violated constraints:

0, if ¢ |E (sol(t(v1)), ..., s0l(1(vn))) © k(c),

cost,, else.

$e((¢(v1), -, tvn)) © K(c), sol) = {
3)

For primitive constraints, such as simple arithmetic equations or inequations, a
violation will normally have fixed costs: cost. = 1. Whereas violations of global
constraints may produce higher and more various costs. Using cost.-values that
are related to the degree of constraint violation, e.g. the number of violations of
implied primitive constraints, has also shown to be effective in [2].

Example 3. The cost function for an alldifferent constraint in our C-implementation
counts the values that are used more than once in the current solution sol:

static float alldiff(struct constraint con,int sol[]){
int i,j;
float res = 0.0;

for(i=0; i < con.arity; i++)
for(j=i+1; j < com.arity; j++){
if (value(con.args[i],sol) == value(con.args[j],sol))
res = res + 1.0;
return res;

¥

The function value returns the current value (w.r.t. sol) of its arguments
con.args[x], which is a number or a variable index. In the latter case the
value is evaluated as sol[con.args[x]].

3 Metaheuristics for CSP

Numerous combinatorial problems occurring e.g. in engineering or business can
be modeled as CSP’s. This very general class of problems includes such popu-
lar problems like the job shop scheduling and the travelling salesman problem.
Therefore, intensive research has been directed towards solving CSP’s as a super
class of problems. Nevertheless, especially in context with large and complex real
world optimization problems exact methods including CLP become prohibitively
time consuming. In most real world applications, good solutions obtained in rea-
sonable computational time are more desirable than an optimal solution in long
or even infinite time. Consequently, the use of approximate methods is com-
manded to solve such problems and have been studied intensively in recent years.
Metaheuristics is a class of such approximate algorithms that has been applied
to all kinds of combinatorial optimization problems very successfully in research
as well as industrial settings. The term metaheuristics subsumes amongst others
local search algorithms like Simulated Annealing and Tabu Search, population-
based heuristics like Genetic Algorithms and Ant Colony Optimization, and their
hybrids. Usually, simple heuristical search algorithms, like greedy search, suffer
from their incapability of overcoming local optima: Once they have found a lo-
cal optimum, they are stuck and search is terminated. Metaheuristics are more
systematic or intelligent approaches to guide such simple heuristics so that this
kind of premature search termination is avoided and the entire search space is
considered sufficiently to find a good local or ideally the global optimum. The
great success of metaheuristics is partly due to their simplicity and flexibility. In
order to allow the exploitation of the respective advantages of CLP and MH in
different application areas of solving CSP’s, we envision the constructed hybrid
CLP-MH constraint processing system as a more powerful and versatile tool.

Basically, the search space for our MH algorithms is given by all possible
assignments of variables to values from within their domains. A ”solution” for
a MH is any such complete variable assignment regardless if the constraint set
C is satisfied or not. To find new variable assignments during search, MH al-
gorithms change or combine values for one or several variables of the current
assignments. Different means of traversing the search space, i.e. transforming
one solution state into another, are used by metaheuristical paradigms. For ex-
ample, population based-methods, like for instance Genetic Algorithms , usually
transform one search state into the next by combining characteristics of the
current set of solutions into a new set of solutions. In contrast, in trajectory-
methods, e.g. Simulated Annealing, each search state consists of a single solution
which is transformed into a new one by modifying a few value assignments. All
solutions reachable by a single transformation, as described e.g. in (4), consti-
tute the neighborhood of the actual solution. How search states are transformed,
variables and values for modification are chosen, local minima are overcome, and
memory is used for these purposes is a design feature of the particular search
algorithm.

Other approaches to the CSP usually take advantage of specific problem
knowledge not available in context with our very general approach, i.e. we can-

not use very specialized penalties as surrogate functions or specialized neighbor-
hoods. Nevertherless, we have identified some types of general neighborhoods
reoccurring in several problem classes. For out test-CSP’s we used three types
of basic, general neighborhoods for use in the local search algorithms, which are
applied according to the specific problem. The first one ist the shift move: One
variable is chosen and assigned to a new value from within its domain. Starting
from a random assignment like presented in (1), the selection process for each
local move is as follows:

1. Select the index j of the variable to be changed.
2. Select the new value d € 6(v;) to be assigned.

The resulting assignment is then the mapping

sol, (v;) = {d’ iti=J, (4)

sol,_1(v;), else.

The shift move is applicable to any type of problem but may be inefficient.
In case of the Magic Squares problem for example, we can use the knowledge
that any solution is a complete ordered set, i.e. a permutation of a given set of
different values. Here, we apply a swap move neighborhood where the values of
two variables are exchanged. The third type is used for incomplete ordered sets
like the Golomb Ruler problem: Any solution is a permutation of a given set of
different values but not all values appear in the solution vector. Then we use a
mixed neighborhood where sometimes swap moves are applied and sometimes
values leave and enter the solution.

For the development of a prototype system we considered three popular MH
algorithms, namely genetic algorithms, simulated annealing, and tabu search.
Simulated Annealing (SA) is a search procedure that has its origin in a simu-
lation model for describing the physical annealing process for condensed matter.
The identifying feature for SA algorithms is a temperature parameter 7' which
controls the probability of accepting a deteriorating moves with objective func-
tion deterioration A. In each search step SA chooses a move randomly and
executes it if it improves the current solution. Otherwise, it accepts the move
with probability e=4/7 depending on the level of deterioration A. The tempera-
ture T is cooled down during the solution process. SA is described in detail e.g.
in [7].

In Section 4.2 we will describe one heuristic that worked well with many
CSP’s. Several heuristics can be used to define the best moves during search.
The overall goal of such transitions is to reduce the result of of the penalty
function (2). However, often transitions have to be made that increase this value
in order to escape from local minima.

Tabu Search (TS) allows, similar to SA, all possible moves during each
search step: It tentatively chooses the best move available, i.e. the most improv-
ing or the least deteriorating one, but uses some type of temporary memory or
“tabu list” to avoid the revisiting of previous solutions and thereby hopefully es-
capes the attraction of a local minimum and moves on through the search space.

Usually, the reassignment of a variable to a value that it took during some recent
period is forbidden by the tabu list. A brief tutorial on TS can be found e.g. in
[9].

While Simulated Annealing is based on principles of physical science, Ge-
netic Algorithms (GA) are search techniques based on an abstract model of
natural evolution. GAs, view solutions as individuals, which are members of a
population. Each individual is characterized by its fitness which is associated
with the objective function. The procedure works iteratively and each iteration
is referred to as a generation. Only surviving individuals of the previous gener-
ation and new solutions or children from the previous generation are members
of the current generation. The population size usually remains constant dur-
ing the procedure. Children are generated through reproduction and mutation
of individuals, parents. A mutation is similar to a neighborhood function a lo-
cal operation on part of a solution. In each generation only the fittest parents
reproduce. For a thorough introduction to GA cf. [14].

In our approach, every individual is given by a variable assignment. Conse-
quently a generation is set of assignments and the fitness is evaluated by our
penalty function (2). Holding several different variable assignments, this algo-
rithm makes several local moves with the creation of every new generation. These
local moves are all defined by “crossover” and “mutation”.

1. The crossover in a generation n of individuals and y, which we denote as
the assignments sol, , and sol, ,, can be defined as a set I, of indices of
values to be selected from =z

solp 5 (v;), ifi €I,
50l y, (v5), else.

()

crossover(soly 4, s0l,) (vi) = {

2. The mutation is executed on every individuum after being created by a
crossover. It is given by one or more local moves like they are presented in
Equation (4).

Again, several heuristics can be used to define the set I, in every pair of indi-
viduals and to define the mutation. As in simulated annealing these local moves
aim on decreasing the result of the penalty function in the long term and can
increase it to escape from local minima.

3.1 Combining Penalty Functions

In many applications, a measure of quality is given among the different solutions
of (underconstrained) CSPs. For such cases, we combined a penalty function
¢opt for this quality measure with the basic penalty function (2) in one search
algorithm.

The basic approach for this was the use of a hard upper bound as a constraint,
which is gradually decreased in order to find better solutions. This approach
simulates the min max constraint, which is supported in many CP systems to
enable optimization with discrete CP methods.

As another approach we used the sum of both penalty functions to choose
the local moves and thus used a real optimization function instead of a hard
constraint. Using this heuristic, we could improve the runtime, because the opti-
mization objectives can be kept separate in the MH (see Fig. 2). We could even
improve this heuristic by using a weighted sum where the wights adapt them-
selves to the progress of the search process. This simple heuristic has turned
out to be very effective and is yet very easy to implement and to apply in CP
programs.

In a second approach to obtain a neighboring assignment for such problems,
we implemented two nested optimization routines. The inner procedure opti-
mizes using our basic penalty function ¢¢ and in a outer procedure solutions
that are “good” w.r.t. ¢p are optimized according to ¢op¢. If in the inner pro-
cedure optimal assignments (¢o(ass) = 0) are found, the outer procedure will
optimize among solutions of the CSP. This setting, however, was found to be
very time consuming and can thus probably only be used if a very good solution
is to be found in a long computation time. If less time is available, the outer rou-
tine can also optimize among suboptimal (¢g(ass) close to 0) assignments which
are not solutions of the CSP. This setting would lead to good results much faster
than enforcing the configuration space for the outer routine to consist only of
solutions.

4 Benefits of the Hybrid Approach

4.1 New Constraints and Optimization

The integration of new types of constraints, respectively their propagators, can
be very difficult in incremental CP systems [3]. The reason for many problems
arising here is that propagation operates on variable domains and not just on
values. If a constraint uses an operation from the algebra of the constraint domain
(e.g. Z), it may be hard to “lift” this operation to the algebra of the variable
domains (e.g. interval arithmetic).

Since metaheuristics do not operate on variable domains but only on values
from within these domains to determine constraint violations such problems
are avoided. The declarative semantics which are defined by the algebra of the
constraint domain can be implemented with the operations and relations of this
algebra and do not have to be “lifted” to the algebra of the variable domains.
In our framework, new constraints can thus be added to the list of allowed
constraints (AC) and to the constraint encoding (p) to allow the implementation
of their declarative semantics on the “value”-level in a corresponding primitive
cost function. Such new constraints will then have no operational semantics in
CP, i.e. they do not propagate. Nevertheless, our penalty function will consider
them such that they tend to be satisfied during the MH solution process. Any
feasible solution returned by MH satisfies these additional constraints.

This integration of new constraints cannot only be done for hard constraints,
that are not available in the actual CP system, but also for soft constraints. In

many application areas of CP soft constraints are used to distinguish between
several feasible solutions and to determine the “best” among those [1]. Thus,
we can use soft constraints to express optimization goals and thus use them to
integrate COPs in CSPs. Such soft constraints for optimization purposes ca be
integrated in the proposed approach via special optimization penalty functions.
In 3.1, we have described some possible combinations of the thus arising different
optimization objectives.

There are various ways of taking multiple soft constraints resp. objectives
into account. In the benchmark tests presented in Figure 2, we used a weighted
sum penalty function with heavily weighted hard constraint violations which
aggregates all penalty functions to one function: The penalty of inconsistencies
is just multiplied and added to the penalty of the optimization function. But
other methods as proposed in the operations research literature, like for instance
the deviation sum strategy, can be easily adopted by our approach.

600000 T T T T
1Lirst solution with separate penalty functions
best solution with separate penalty functions -
solution with hard upper bound and only primitive penalty function ——=—

500000 —
400000 [~
msec 300000 —
200000 [—

100000 —

11 11.5 12

=S
@
2
o
o |l
28)
=dq
-
-
o
&

Fig. 2. The golomb-rulers n benchmark using separate penalty functions for constraint
satisfaction and optimization. All values are means of 10 runs of Tabu Search with
mixed-neighborhood in milliseconds. As “hard” upper bound for the test without sep-
arate optimization function we used 1.1 % opt, where opt is the known optimal value.
In the other tests, the best solution found was always around 1.1 % opt and the quality
of the first solution was in average, approximately 1.6 * opt

4.2 Violation Depending Local Moves

In our approach we provide the number of violated constraints a variable is
involved in as a heuristic for variable selection. A heuristic that selects always
the most violating variable has been applied very successfully in [2].

For this purpose, the penalty function defines as a side effect a mapping
of variables to natural numbers. This mapping assigns to every variable v the
number of violated constraints ¢ with v € v(¢). The computational effort caused
is constant and thus there is no significant effect on the performance of the
algorithm. This mapping can then be used as a heuristic to select the variable
which is likely to improve the solution if its value is changed.

In Figure 3 we show some runtime results of our Tabu Search applied to
the well know n-queens problem to evaluate different instances of this heuristic.
We tried to explore the tradeoff between near to optimal local moves, which are
expensive to compute, and more random moves wich can be generated quickly
but can be worse w.r.t. global optimization. Thus we tested, how important for
the local moves it is to change the variables with many violations prior to those
with one very little, but not 0, violations. As can be seen from the figure, none
of the tested heuristics is constantly dominant over all instances. However, using
no heuristic leads to runtime results far worse (several minutes for 20 queens),
thus we did not include these results. Recapitulating on this, we claim that using
violations to select neighbors in local moves is very useful, but the information on
the number of violations is unlikely to provide better heuristics for local moves.

4.3 Propagators for Metaheuristics

Another method to improve the performance of the search algorithms we have
investigated is the use of propagators. Forward-checking is implemented in al-
most all CP systems, because it can significantly increase search performance.
In metaheuristics, usually no such explicit propagation is used. However, in ex-
periments we have determined, that the application of forward-checking to some
kinds of constraints is very fruitful for the efficiency of a metaheuristic in the
context of solving general CSPs (or COPs). It allows to exclude inconsistent
variable assignments in the local moves. This is done by only permuting some
values of the assignment and by evaluating all the others using forward-checking.
For example, to find a variable assignment that does not violate a simple arith-
metic constraint such as X +Y = Z, it is much easier to assign Z to the current
value of X +Y than to guess three values which satisfy the constraint. In Figure
4 we show the runtime results of the all-intervals benchmark with the use of
propagators.

Such assignments to variables that are driven by propagation and not by the
normal Local Search methods can be integrated in our approach as new con-
straints. The primitive cost function for such constraints will always return zero
and, as a side-effect, assign values in a forward-checking manner. This propaga-
tion is done before the evaluation of the cost for an assignment, which can be
implemented in the penalty function: first execute all propagators, then execute
the “regular” constraints.

5000
l (‘hanlge most violated wlariable to any imlproving value &—
prioritise variables with many violations for change to any improving value -
4500 — change a randomly selected violated variable to any improving value —g—
change randomly selected violated variable to most improving value = ¢

4000 —

3500 [~

3000 [~

msec 2500 —

2000 —

1500 —

1000 —

500

Fig. 3. The effect of using the violations to determine local moves. The n-queens prob-
lem solved by Tabu Search and shift-move neighborhood with different neighborhood
functions . Ordinate depicts the median of 25 runs in milliseconds.

5 Conclusion

In this paper we give an overview of our current research on a generic interface
between Constraint Programming and Metaheuristics. Different metaheuristic
search procedures are incorporated as (non-backtrack-able) labeling predicates
in CLP. The MH procedures use penalty functions to solve constraint satisfaction
problems, that are generated during runtime from the specified constraint model.
If applicable, also special heuristics can be integrated to improve the search
performance. Thus we allow for any efficient and specialized optimization method
from operations research to be integrated in specialized search algorithms. On
the other hand the pure CSP model, as it is defined in a CP language, can be
used as a basis for the metaheuristic search procedures, such that no specials
search strategies have to be implemented to use arbitrary MH algorithms.

We have implemented and analyzed different general heuristics that apply
to CSP, such as violation depending local moves or forward-checking proce-
dures for the generation of the neighborhood. Some of these heuristics when ap-
plied to CSP have already shown to be quite effective w.r.t. search performance
and optimization capabilities. Thus we expect, that we can find configurations
for our generic approach that combine the good features of both programming
paradigms very soon. With this integration, we preserve the declarative modeling

80

160000

140000 —

120000 —

100000 —

msSec

Fig.

| I I
runtime fJor solution with use of propagators. —e—

80000 —
60000 —
40000 —

20000 —

<p
o<p-
<P

"

4. The mean runtime of 10 runs of Tabu Search with propagators and shift-move

neighborhood on the all-intervals n benchmark. The same algorithm would use more
than 5 minutes for n = 6 if used without propagators.

features and the strong propagation methods of CP while gaining the efficient
optimization properties from the MH used.

References

[1]

Stefano Bistarelli and Ugo Montanari and Francesca Rossi Semiring-based Con-
straint Satisfaction and Optimization Journal of the ACM 44(2), pp.201-236,
1997.

Philippe Codognet and Daniel Diaz Yet Another Local Search Method for Con-
straint Solving In K. Steinhéfel, editor, SAGA 2001, LNCS 2264, pp. 73-89,
Springer 2001.

Alain Colmerauer Solving the multiplication constraint in several approrimation
spaces Invited talk at CP 2001, Paphos, November 2001.

M. Dincbas and P. van Hentenryck and H. Simonis and A. Aggoun and T. Graf
and F. Berthier The Constraint Logic Programming Language CHIP Proceedings
of the International Conference on Fifth Generation Computer Systems, 1988.
F. Focacci, F. Laburthe and A. Lodi Local Search and Constraint Programming In
F. Glover, G. Kochenberger, Eds., Handbook of Metaheuristics, Kluwer Academic
Publishers, 2003.

Eugene Freuder and Richard Wallace Partial Constraint Satisfaction Proceedings
of the Eleventh International Joint Conference on Artificial Intelligence, IJCAI-89,
Detroit, USA, pp.278-283, 1989.

[7]

(8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

D. Henderson, S.H. Jacobson and A.W. Johnson The Theory and Practice of
Simulated Annealing In F. Glover, G. Kochenberger, Eds., Handbook of Meta-
heuristics, Kluwer Academic Publishers, 2003.

Pascal van Hentenryck Constraint Satisfaction in Logic Programming MIT Press,
1989.

A. Hertz, E. Taillard and D. de Werra A Tutorial on Tabu Search. Proc. of
Giornate di Lavoro AIRO’95 (Enterprise Systems: Management of Technological
and Organizational Changes), pp. 13-24, Italy, 1995.

Narendra Jussien and Oliver L'Homme Local search with constraint propagation
and conflict-based heuristics Artificial Intelligence 139(1), pp. 21-45, 2002.

Olli Kamarainen and Hani El Sakkout Local Probing Applied to Scheduling In
P. van Hentenryck, editor, Principles and Practice of Constraint Programming -
CP2002, LNCS 2470, pp. 155-171. Springer 2002.

S.Minton, M. Johnson and P. Laird Minimizing conflicts: A heuristic repair
method for constraint satisfaction and scheduling problems Artificial Intelligence
58, pp- 161 — 206, 1992.

Gilles Pesant and Michel Gendreau A view of local search and constraint program-
ming In E. Freuder, editor, Principles and Practice of Constraint Programming -
CP1996, LNCS 1118. Springer 1996.

C. Reeves Genetic Algorithms In F. Glover, G. Kochenberger, Eds., Handbook
of Metaheuristics, Kluwer Academic Publishers, 2003.

K. Steinhdfel, A. Albrecht and C.K. Wong Two Simulated Annealing-Based
Heuristics for the Job Shop Scheduling Problem European Journal of Operational
Research, 118(3), pp.524-548, 1999.

