
Realizing the Alternative Resources Constraint

Problem with Single Resource Constraints

Armin Wolf and Hans Schlenker

Fraunhofer FIRST, Kekuléstraße 7, D-12489 Berlin, Germany
{Armin.Wolf|Hans.Schlenker}@first.fraunhofer.de

Abstract. Alternative resource constraint problems have to be solved
in practical applications where several resources are available for the ac-
tivities to be scheduled. In this paper, we present a modular approach to
solve such problems which is based on single resource constraints. Fur-
thermore, we present a new sweeping algorithm which performs some
“global” overload checking for the alternative resource constraint prob-
lem. To our knowledge, this is the first presentation where “sweeping”,
a well-known technique in computational geometry, was used to perform
this checking efficiently.
For a practical evaluation of our approach, we implemented and inte-
grated it in our Java constraint engine firstcs. We compared our im-
plementation with the more general disjoint2 constraint in SICStus
Prolog on some benchmark problems. These problems are random place-
ment problems available online on the Internet.

1 Introduction

Often, in scheduling situations like course timetabling, medical tool use, or the
allocation of railway tracks an activity can be scheduled on any one resource
from a set of alternative resources. In all these cases it must be ensured that the
selected resource is exclusively available during the execution of the activity.

In Constraint Programming, there are two main approaches to solve such
alternative resource scheduling problems: either by an extension of some single
resource constraints [1] or by abstraction and application of a more general non-
overlapping rectangles constraint. Recent publications [3, 7] have shown that for
both kinds of constraints some efficient pruning techniques based on “sweep-
ing” [6] exist.

In this paper we combine both approaches: the extension and application of
pruning algorithms developed for single resource constraints [7] and the devel-
opment of a new sweeping algorithm for a non-overlapping rectangle constraint.
This algorithm performs some overload checks for the early detection of some
inconsistency after the application of the pruning algorithms.

2 The Alternative Resource Constraint Problem

Informally, the alternative resource constraint problem is the problem of finding
allocation of non-interruptible tasks to be processed on one of its alternative

machines such that they are not overlapping on any machine. More formally,
the problem is defined as follows:

Definition 1 (Task). A task t is a non-interruptible activity having a non-
empty finite set of potential start times St ⊂ Z, i.e. an integer set which is the
domain of its variable start time. Furthermore, a task t has a non-empty finite
set of possible durations Dt ⊂ N, i.e. a positive integer set which is the domain
of its variable duration. Finally, a task t has a non-empty finite set of alternative
resources Rt ⊂ Z, i.e. an integer set which is the domain of its variable resource.

Definition 2 (Alternative Resource Constraint Problem). Given a finite
set of tasks T = {t0, . . . , tn} with at least two elements (n > 0). An alternative
resource constraint problem is determined by such a set of tasks T . The problem
is to find a solution, i.e. some start times s(t0) ∈ St0 , . . . , s(tn) ∈ Stn

, some du-
rations d(t1) ∈ Dt1 , . . . , d(tn) ∈ Dtn

and some resources r(t1) ∈ Rt1 , . . . , r(tn) ∈
Rtn

such that for 1 ≤ i < j ≤ n it holds

s(ti) + d(ti) ≤ s(tj) ∨ s(tj) + d(tj) ≤ s(ti) ∨ r(ti) 6= r(tj) .

An alternative resource constraint problem is solvable if there is such a solution
and unsolvable, otherwise.1

Assuming that the durations are fixed and the (average) size of all sets of
potential start times is m and of all sets of alternative resources is k, the determi-
nation of an solution has in general an exponential time complexity of O(mnkn).
To reduce this complexity, in Constraint Programming (CP) propagation is used:
An iteration over efficient algorithms pruning the variables’ domains such that
some – ideally all – values are eliminated not belonging to any solution.

Our aim is the development and implementation of such algorithms for al-
ternative resource constraint problems. Keeping in mind that an alternative
resource constraint problem corresponds to a conjunction of single resource con-
straint problems if the resource domains are singular, i.e. if

|Rt1 | = · · · = |Rtn
| = 1

holds, our work focuses on an generalisation of our previous work performed for
non-preemptive one-machine constraint problems (cf. [7] following the sugges-
tions in [1]).

3 Forbidden Regions

Given a single resource constraint problem determined by a set of tasks T . A
forbidden region of a task t ∈ T to be scheduled on a resource r is an integer
interval I such that for any start time s(t) ∈ I it is impossible to schedule
another task u ∈ T \ {t} on the same resource r either before or after the task t

(see Figure 1).

1 Empty or singleton sets of tasks determine trivial problems.

min(D u)

max(S u)

min(D t)

min(S u)

min(S t)

min(D u)

min(D t)

max(S t)forbidden

Fig. 1. A forbidden region of a task t with respect to another task u.

Assuming that all tasks in T must be scheduled on the same resource r, the
application of the pruning rule

∀t ∈ T ∀u ∈ T \ {t} (1)

: max(Su) − min(Dt) + 1 ≤ min(Su) + min(Du) − 1

⇒ S′

t := St \ [max(Su) − min(Dt) + 1, min(Su) + min(Du) − 1]

determines the forbidden regions of each task t ∈ T locally with respect to
another task u ∈ T \ {t}. The updating of the start times of the task t (primed
to notify the possible change) will prune the search space correctly (cf. [7] for
the correctness poof.)

Considering an alternative resource constraint problem, this means that after
an allocation of all tasks to their resources this pruning rule and all the other
rules presented [1, 7] are applicable. However, any pruning and consistency checks
must be delayed until at least all the tasks to one single resource are allocated.
This seems to be rather late and contradicts the principle of early pruning in CP.
Therefore, we investigated in a generalisation of the pruning rule (1) for alter-
native resource constraint problems. The result of this investigation is presented
in the following:

Definition 3. Given an alternative resource constraint problem determined by
a set of tasks T . Then, for each task t ∈ T and every resource r ∈ Rt, we define:

– a non-empty, finite set of alternative start times Sr
t := St,

– a non-empty, finite set of alternative durations Dr
t := Dt ∪ {0}.

We also store the initial alternative resources for each task t ∈ T : Mt := Rt.

Now the pruning rule (1) will be generalised in two directions. In both cases,
a pair of two different tasks t and u are considered which may be allocated to
the same resource r ∈ Rt ∩ Ru:

1. If – under the assumption that the task t is allocated to the resource r –
the forbidden region of the task t with respect to the task u subsumes its
domain of potential start times, then the task t must be scheduled on another
resource, i.e. its duration on the resource r becomes zero:

∀t ∈ Tr ∀u ∈ Tr \ {t} (2)

: max(Sr
u) − min ?(Dr

t \ {0}) + 1 ≤ min(Sr
t)

∧ max(Sr
t) ≤ min(Sr

u) + min(Dr
u) − 1

⇒ D′r

t := Dr
t ∩ {0} ,

where Tr := {t ∈ T | r ∈ Rt} and for all M ⊆ N it holds

min ?(M) :=

{

0 if M = ∅,
min(M) otherwise.

2. If – under the assumption that the task t is allocated to the resource r – the
forbidden region of the task t with respect to the task u is not a superset
of the domain of start times, then the task t cannot be scheduled at start
times in this forbidden region on the resource r:

∀t ∈ Tr ∀u ∈ Tr \ {t} (3)

: max(Sr
u) − min(Dr

t \ {0}) + 1 ≤ min(Sr
u) + min(Dr

u) − 1

∧ (max(Sr
u) − min(Dr

t \ {0}) + 1 > min(Sr
t)

∨max(Sr
t) > min(Sr

u) + min(Dr
u) − 1)

⇒ S′r

t := Sr
t \ [max(Sr

u) − min(Dr
t \ {0}) + 1, min(Sr

u) + min(Dr
u) − 1] ,

where Tr := {t ∈ T | r ∈ Rt}.

The replacement the original pruning rule (1) by the these two rules for each
single resource r ∈

⋃

t∈T Rt will perform some additional pruning for the alter-
native resource constraint problem. Furthermore, these pruning are still correct,
i.e. no solutions are lost: The second extension is a specialisation of the original
rule; whenever the start times are pruned they will be pruned by the original
rule, too. For the first extension we have to distinguish two cases: (1) Dr

t = {0}
and (2) Dr

t 6= {0}.
In the first case, nothing changes. Consequently, no solution will be lost.
In the second case, we further have to distinguish two sub-cases: (2.a) 0 ∈ Dr

t

and (2.b) 0 6∈ Dr
t . In case (2.a), Dr

t will be pruned to {0} by the application of
the extended rule (2) and Sr

t will be pruned to the empty set by the original
rule (1). In case (2.b) Dr

t will be pruned to the empty set by the application of
the extended rule while Sr

t will also be pruned to the empty set by the original
rule. In either case, there is no solution where the task t is allocated to the
resource r, especially because 0 6∈ Dt.

However, for further pruning the changes with respect to each single resource
must be propagated to the original domains and from one resource to another.
Especially, if the duration of task t and a resource r is set to zero (cf. pruning
rule (2)), the task’s potential resources must be updated:

∀t ∈ T ∀r ∈ Rt : Dr
t := {0} ⇒ R′

t := Rt \ {r} . (4)

If the possible durations of a task t are restricted from “outside”, e.g. during
the search, these changes must be propagated to the duration sets of each single
resource:

∀t ∈ T ∀r ∈ Rt : D′r

t := Dr
t ∩ (Dt ∪ {0}) . (5)

If the potential start times are restricted from “outside”, e.g. during the
search, and/or by application of the pruning rule (3), these changes have to be
propagated to the single resources:

∀t ∈ T ∀r ∈ Rt : Sr
t ∩ St = ∅ ⇒ R′

t := Rt \ {r} ∧ Dr
t := Dr

t ∩ {0} ,

∀t ∈ T ∀r ∈ Rt : Sr
t ∩ St 6= ∅ ⇒ S′r

t := Sr
t ∩ St ,

∀t ∈ T : S′
t := St ∩ (

⋃

r∈Rt

Sr
t) .

In the first case, there is no potential start time left for a task t and a resource r.
Consequently, it will be impossible to allocate the task t to the resource r. Thus,
r will be removed from the set of alternative resources. In the second case, the
restriction of the start times is propagated to the start times on the alternative
resources. Last but not least, the restrictions of the start times which are valid
for all alternative resources are propagated to the potential start times.

The application of these three rules in the given order, supersedes an iteration
over these rule for the computation of a local fix-point.

If the resource of a task t is determined – from “outside”, e.g. during the
search, and/or by application of the pruning rules (2) and (4) – the possible
duration for this resource must be positive and zero for all the other resources,
i.e. the initial alternatives:

∀t ∈ T : Rt = {r} ⇒ D′r

t := Dr
t \ {0} ∧

∀s ∈ Mt \ {r} : D′s

t := Ds
t ∩ {0} .

4 Global Overload Checking

The application of several single resource constraints for the realisation of the al-
ternative resource constraint benefits from overload checking performed “locally”
for each resource (cf. [7]). However, these checks are weak as long as all activities
are allocated to the resources: the minimal duration of an activity is zero on all
its potential resources until the allocation is determined (see Section 3).

A necessary, global condition for the solubility of an alternative constraint
problem determined by a set of tasks T = {t0, . . . , tn} is that each non-empty
set of tasks M ⊆ T is not overloaded, i.e. the occupied area is not greater than
the available area:

∑

t∈M

min(Dt) × 1 ≤

(max
t∈M

(max(St) + min(Dt)) − min
t∈M

(min(St))) × (max
t∈M

(Rt) + 1 − min
t∈M

(min(Rt))) .

The naive overload checking of all 2n+1 − 1 non-empty subsets of T is not
practical. Thus, we suppose to consider the set of at most

∑n

l=0 l ×
∑n

m=0 m =
(n+2)2(n+1)2

4 task rectangles, i.e. the set of tasks defined by the cartesian product

of two integer intervals whose bounds are determined by some tasks:

[llc(i, j)X , urc(h, k)X] × [llc(i, j)Y , urc(h, k)Y]

:= {t ∈ T | llc(i, j)X ≤ min(St) ∧ max(St) + min(Dt) ≤ urc(h, k)X

∧ llc(i, j)Y ≤ min(Rt) ∧ max(Rt) + 1 ≤ urc(h, k)Y }

where the lower left corners (the llcs) and the upper right corners (the urcs)
are defined as follows:

llc(i, j)X := min(min(Sti
), min(Stj

))

llc(i, j)Y := min(min(Rti
), min(Rtj

))

urc(h, k)X := max(max(Sth
) + min(Dth

), max(Stk
) + min(Dtk

))

urc(h, k)Y := max(max(Rtk
) + 1, max(Rtk

) + 1)

for 0 ≤ i ≤ j ≤ n and 0 ≤ h ≤ k ≤ n (see Figure 2).

sweep line

LLCy

URCy

LLCx URCx

Fig. 2. Determining a possibly non-empty task rectangle.

To perform overload checking we use “sweeping” originated and used widely
in computational geometry [6]. The recent publication [4] has shown that sweep-
ing is also an efficient pruning technique when adapted and applied to finite
domain constraint solving problems, especially for non-overlapping rectangles
constraint problems.

While sweeping over task rectangles, it is assumed that the tasks in T are
numbered t0, . . . , tn according to an ascending sorting with respect to the order
relation

t � u :⇔ (min(St) + min(Rt) < min(Su) + min(Ru))

∨ (min(St) + min(Rt) = min(Su) + min(Ru) ∧ min(Rt) ≤ min(Ru)

such that t0 � · · · � tn holds. Furthermore, we assume that all the corners (llcs
and urcs) are also numbered c0, . . . , cm according to an ascending sorting with
respect to the order relation

c � d :⇔ (cX + cY < dX + dY) ∨ (cX + cY = dX + dY

∧ ((c, d are both either llcs or urcs ∧ cY ≤ dY)

∨ (c is an urc ∧ d is an llc))

such that c0 � · · · � cm holds. Then, we are sweeping forward, i.e. in ascending
order, over the sorted corners:

♦ If the next event is cj (0 ≤ j ≤ m) is an llc then

– append cj at the end of the sweep line.

♦ If the next event cj (0 ≤ j ≤ n) is an urc then

– let p := 0 and
– iterate forward over the llc ci0 , . . . , cik

in the sweep line – for l = 0, . . . , k:
• if (cil Y > cjY

) then stop this iteration over the llcs; continue sweeping.
• let A := 0 and Ail,j := (cjX

− cil X) × (cjX
− cil X)

• while ((min(Stp
) + min(Rtp

) < cilX + cil Y)
∨ (min(Stp

) + min(Rtp
) = cil X + cilY ∧ min(Rtp

) < cilY))
∗ let p := p + 1.

• iterate forward over the tasks tp, . . . , tn – for m = p, . . . , n:
∗ if (min(Stm

) + min(Rtm
) > cjX

+ cjY
) then

stop this iteration over the tasks; continue iteration over the llcs.
∗ if (min(Stm

) ≥ cilX ∧ min(Rtm
) ≥ cilY

∧ max(Stm
) + min(Dtm

) ≤ cjX
∧ max(Rtm

) + 1 ≤ cjY
)

then let A := A + (min(Dtm
× 1)

∗ if A > Ail,j then there is no feasible schedule; exit.

Y
c il

c j
Y

(a) llc iteration

t m

c j X+Y = const.

(b) task iteration

Fig. 3. Breaking conditions for the iterations.

The algorithm works as follows: During the forward iteration over the sweep
line all llc are considered which might define a possibly non-empty rectangle
with respect to the current urc cj (cf. Figure 2). The chosen order relation ‘�’

on corners ensures that all rectangles with a positive area Ail,j are considered.
Figure 3 (a) gives some evidence for stopping the iteration over the llcs. Then,
the occupied area in the rectangle is determined. Therefore, some tasks that
are not contained in the rectangle – they are are either “left” or “below” – are
skipped. Again, the chosen order relations ‘�’ on tasks and corners as well as
their compatibility with each other ensure that only irrelevant tasks are skipped.
For all the other tasks which are contained the occupied area is accumulated.
Figure 3 (b) gives some evidence for stopping the iteration over the tasks. An
overload is detected if the total occupied area A becomes greater than the avail-
able area Ail,j : Then, the algorithm stops because there is no feasible solution
of the given alternative resource constraint problem.

5 Implementation

The extensions presented in Section 3 as well as the sweeping algorithm intro-
duced in Section 4 are implemented in Java: Both implementations are integrated
in our pure Java constraint engine, called firstcs [5]. Concretely, the forbidden
region pruning algorithm in the existing single Resource constraint implemen-
tation was generalised. This algorithm is also realised as a sweeping algorithm
(see [7] for details).

Then, we implemented an AlternativeResource constraint which generates
for each resource r ∈

⋃

t∈T Rt a single Resource constraint which performs
pruning for each single resource constraint problem determined by the task set
Tr. Thus, pruning for the alternative resource constraint problem benefits from
additional pruning rules, like edge finding and not-first/not-last detection also
implemented in the Resource constraint (cf. [7] for details).

Additionally, we realized in the AlternativeResource constraint the prun-
ing rules presented in Section 3 performing propagation from and to the original
domains and between the generated single Resource constraints. This imple-
mentation iterates over these rules until a local fix-point is computed, i.e. any
application of the presented rules and algorithms will neither restrict the poten-
tial start times, the possible durations nor the alternative resources.

Finally, we implemented the sweeping algorithm for overload checking. This
algorithm is applied after the computation of the fix-point because it will not
change any domains.

6 Empirical Examinations

For empirical examinations, we used the random placement problems (RPP),
which are online available at http://www.fi.muni.cz/˜hanka/rpp/. All the
problem instances consist of 200 activities of randomly generated durations.
Their potential start times as well as their alternative resources are randomly
restricted to some finite integer intervals. For any of these instances the starting
times and resources for the 200 activities must be determined such that the
resources are exclusively available during the execution of these activities.

From a practical point of view, these RPP instances correspond to sim-
ple course timetabling problems [2]: each activity corresponds to a course and
its alternative resources to the adequate classrooms, i.e. of sufficient capac-
ity and with the needed equipment. We used the RPP instances to test our
AlternativeResource constraint presented in Section 5. Furthermore, we com-
pared our implementation based on the Java Standard Edition, version 1.4.0-03
against the more general disjoint2 constraint in SICStus Prolog, version 3.11.0.
The experiments were performed under Microsoft Windows XP on a PC Pentium
4, 2.8 GHz with 1 GByte RAM.

In both implementations we used standard labelling (simple depth-first search)
to determine the start times and the resources: The activities were considered in
their given order (activity 1 first, activity 200 last). During the search, for each
activity the start time was assigned after selecting the resource. In both cases,
the smallest available, not yet tried value was selected.

Our experiments have shown that all the instance with filled area ratio of
80% and 85% are solvable. Both implementations found their first solutions
backtrack-free without any global propagation 2: 400 assignments – 200 resources
plus 200 start times. For all these problems, the SICStus Prolog implementation
required on average no measurable time for constraint generation and initial
propagation, our implementation required on average 150 milliseconds. The la-
belling process for one of these problems which triggers some further propagation
took on average 50 milliseconds in SICStus Prolog and about 2200 milliseconds
in our Java implementation.

Additional experiments on the instances with a filled area ratio of 100% have
shown that all instances which are backtrack-free solvable using the SICStus
Prolog implementation are backtrack-free solvable with our Java implementa-
tion, except the instance 100/gen38 which requires 5 backtracking steps in our
Java implementation. Furthermore, all the instances which were detected to be
unsolvable using SICStus Prolog are also detected by the use of our Java imple-
mentation. In any case an inconsistency was detected during the initial “global”
propagation: SICStus Prolog’s disjoint2 with its global option switched on
and our implementation with its global overload checking described in Section 4.
In these unsolvable cases, SICStus Prolog used on average 15 milliseconds to
detect an inconsistency, our Java implementation used on average 150 millisec-
onds. However, our Java implementation detects further unsolvable instances
with filled area ratio of 100% during the initial “global” propagation: 100/gen6,
100/gen13, 100/gen32, and 100/gen50. It took only 230 milliseconds on average
per instance to detect an overload.

7 Conclusion and Future Work

In this paper, we presented a modular approach for the alternative resource con-
straint problem based on single resource constraints. Furthermore, we presented

2 In SICStus Prolog the global option was switch off as well as the global overload
checking (see Section 4) in our Java implementation.

a new sweeping algorithm which performs overload checking for the alternative
resource constraint problem. However, a proof that the consideration of task
rectangles is sufficient as well as a proof that this algorithm performs correct is
not yet given. This will the topic of future theoretical work.

Obviously, the presented “global” overload checking in Section 4 is applicable
to non-overlapping rectangles problems, where the rectangles might have heights
greater than one. Thus, our future work also focuses on the combination of our
sweeping algorithm with to one presented in [3]) yielding better pruning for
non-overlapping rectangles problems.

Last but not least, our implementation of the pruning rules and algorithm
is successfully applied to some online available benchmark placement problems
yielding some encouraging results: Compared to SICStus Prolog, our implemen-
tation’s runtime is reasonable well, its pruning performance is comparable and
even better for the unsolvable placement instances.

References

1. Philippe Baptiste, Claude le Pape, and Wim Nuijten. Constraint-Based Scheduling.
Number 39 in International Series in Operations Research & Management Science.
Kluwer Academic Publishers, 2001.

2. Roman Barták, Tomáš Müller, and Hana Rudová. Minimal perturbation prob-
lem - a formal view. In Proceedings of the Joint Annual Workshop of the ERCIM

Working Group on Constraints and the CoLogNET area on Constraint and Logic

Programming, MTA SZTAKI, Budapest, Hungary, 30 June – 2 July 2003.
3. Nicolas Beldiceanu and Mats Carlsson. Sweep as a generic pruning technique applied

to the non-overlapping rectangles constraint. In Toby Walsh, editor, Proceedings of

the 7th International Conference on Principles and Practice of Constraint Program-

ming - CP2001, number 2239 in Lecture Notes in Computer Science, pages 377–391.
Springer Verlag, 2001.

4. Nicolas Beldiceanu and Mats Carlsson. A new multi-resource cumulatives constraint
with negative heights. In Pascal van Hentenryck, editor, Proceedings of the 8th

International Conference on Principles and Practice of Constraint Programming -

CP2002, number 2470 in Lecture Notes in Computer Science, pages 63–79. Springer
Verlag, 2002.

5. Matthias Hoche, Henry Müller, Hans Schlenker, and Armin Wolf. firstcs - A Pure
Java Constraint Programming Engine. In Michael Hanus, Petra Hofstedt, and
Armin Wolf, editors, 2nd International Workshop on Multiparadigm Constraint Pro-

gramming Languages – MultiCPL’03, 29th September 2003. Online available at
uebb.cs.tu-berlin.de/MultiCPL03/Proceedings.MultiCPL03.RCoRP03.pdf.

6. Franco P. Preparata and Michael Ian Shamos. Computational Geometry, An Intro-

duction. Texts and Monographs in Computer Science. Springer Verlag, 1985.
7. Armin Wolf. Pruning while sweeping over task intervals. In Francesca Rossi, edi-

tor, Proceedings of the 9th International Conference on Principles and Practice of

Constraint Programming – CP 2003, number 2833 in Lecture Notes in Computer
Science, pages 739–753, Kinsale, County Cork, Ireland, 30th September – 3rd Oc-
tober 2003. Springer Verlag.

