
Solving Alternating Boolean Equation Systems in
Answer Set Programming

Misa Keinänen1,2 and Ilkka Niemelä1

1 Dept. of Computer Science and Engineering, Lab. for Theoretical Comp. Science
Helsinki University of Technology, P.O. Box 5400, FIN-02015 HUT, Finland

2 Department of Computer Science, CWI, P.O. Box 94079, 1090 GB Amsterdam, The
Netherlands

Ilkka.Niemala@hut.fi, Misa.Keinanen@hut.fi

Abstract. In this paper we apply answer set programming to solve alternating
Boolean equation systems. We develop a novel characterization of solutions for
variables in disjunctive and conjunctive Boolean equation systems. Based on this
we devise a mapping from Boolean equation systems with alternating fixed points
to normal logic programs such that the solution of a given variable of an equa-
tion system can be determined by the existence of a stable model of the corre-
sponding logic program. Our translation is such that it ensures the computational
complexity of solving important subclasses of equation systems, like linear time
for solving alternation-free equation systems and polynomial time for disjunc-
tive/conjunctive alternating systems. The technique can be used to model check
alternating formulas of µ-calculus logic.

1 Introduction

The correctness of finite-state concurrent systems can be formalized as model check-
ing problems. Model checking is a verification technique aimed at determining whether
a system specification model satisfies desired properties expressed as temporal logic
formulas. In recent years, research on model checking has addressed large scale verifi-
cation problems, which are often solved by special purpose verification tools.

Yet it has been demonstrated that also logic programming systems can successively
be applied to the construction of practical model checkers, like e.g. in [8, 4, 11]. In
the present paper, we continue this line of research and restrict the attention to the
model checking problem of modal µ-calculus [10], and in particular to its formulation
as Boolean equation systems [1, 13, 16]. The research topic belongs to the area of formal
verification, but more specifically it addresses effective ways of solving systems of fixed
point equations.

The modal µ-calculus is an expressive logic for systems verification, and has been
widely studied in the recent model checking literature (e.g. [2] gives a general exposi-
tion). Boolean equation systems provide here a useful framework, because µ-calculus
expressions can easily be translated into this more flexible formalism (see [1, 2, 13] for
the standard translations). The complexity of µ-calculus model checking is an impor-
tant open problem; no polynomial time algorithm has been discovered. On the other
hand, it is shown in [5, 6] that the problem is in the complexity class NP ∩ co-NP (and

2 Misa Keinänen and Ilkka Niemelä

is known to be even in UP ∩ co-UP [9]). Hence, the problem appears to be directly
solvable with any answer set programming system capable of handling NP-complete
problems. In this paper, we propose an answer set programming based approach for
solving alternating Boolean equation systems. We suggest the method provides a basis
for a model checking technique for alternating fragment of µ-calculus logic.

Previously, answer set programming has been applied to solve Boolean equation
systems in [11] where it is argued that alternating Boolean equation systems can be
solved by computing certain preferred stable models of propositional normal logic pro-
grams corresponding to Boolean equation systems. Moreover, it is shown in [11] how
alternation-free Boolean equation systems can be mapped to stratified logic programs,
which can be directly solved in linear time, preserving the complexity [15] of model
checking alternation-free fragment of µ-calculus. However, the approach proposed in
[11] does not preserve the polynomial time complexity of solving disjunctive and con-
junctive Boolean equation systems.

We reduce the problem of solving alternating Boolean equation systems to comput-
ing stable models of normal logic programs. This is achieved by devising an alternative
mapping from Boolean equation systems to normal logic programs so the solution for
a given variable in an equation system can be determined by the existence of a stable
model of the corresponding logic program. Our translation is such that it ensures poly-
nomial time complexity of solving both disjunctive and conjunctive alternating systems,
and hence preserves the complexity of model checking many important fragments of µ-
calculus, like L1 and L2 investigated in [3, 5, 6].

The paper is organized as follows. In the following section we introduce basic no-
tions of Boolean equation systems. In Section 3 we state some properties of Boolean
equation systems which are important in solving them. In Section 4 we review sta-
ble model semantics of normal logic programs. In Section 5 we show how alternating
Boolean equation systems can be solved using answer set programming techniques.
In Section 6 we discuss some initial experimental results. Finally, Section 7 contains
conclusive remarks.

2 Boolean Equation Systems

We will give in this section a short presentation of Boolean equation systems. Essen-
tially, a Boolean equation system is an ordered sequence of fixed point equations over
Boolean variables, with associated signs, µ and ν, specifying the polarity of the fixed
points. The equations are of the form σx = α, where α is a positive Boolean formula.
The sign, σ, is µ if the equation is a least fixed point equation and ν if it is a greatest
fixed point equation.

Let X = {x1, x2, ..., xn} be a set of Boolean variables. The set of positive Boolean
expressions over X is denoted by B+(X), and given by the grammar:

α ::= true | false | x ∈ X | α1 ∧ α2 | α1 ∨ α2.

We define the syntax of Boolean equation systems as follows.

Definition 1 (The syntax of a Boolean equation system). A Boolean equation is of
the form σixi = αi, where σi ∈ {µ, ν}, xi ∈ X , and αi ∈ B+(X).

Solving Equation Systems in Answer Set Programming 3

A Boolean equation system is an ordered sequence of Boolean equations

E = ((σ1x1 = α1)(σ2x2 = α2), ..., (σnxn = αn))

where the left-hand sides of the equations are all different. We assume that the order on
variables and equations are in synchrony.

The semantical interpretation of Boolean equation systems is such that each system E
has a uniquely determined solution, which is a valuation assigning a constant value in
{0, 1} (0 standing for false and 1 for true) to variables occurring in E . More precisely,
the solution is a truth assignment to the variables {x1, x2, ...} satisfying the fixed-point
equations such that the right-most equations have higher priority over left-most equa-
tions.

Formally, we consider positive Boolean expressions α as functions over Boolean
lattice ({0, 1},≤) with 0 < 1. Let v, v1, . . . range over valuations, where each v is a
function v : X → {0, 1}. A function α can be applied to a valuation v, and the result
α(v) is the value of α after substituting each free variable x of α by v(x). We denote
by v[x/a] the valuation that coincides with v for all variables except x. We suppose
that [x/a] has priority over all operations and v[x/a] stands for (v[x/a]). Then, the
semantics is defined as follows:

Definition 2 (The solution of a Boolean equation system). Let (σx = α)E be a
Boolean equation system, and v : X → {0, 1} a valuation. The solution of (σx = α)E
relative to v, denoted by [[(σx = α)E]]v, is an assignment inductively defined by

[[ε]]v = v

[[(σx = α)E]]v =

{

[[E]]v[x/µx.α([[E]]v)] if σ = µ
[[E]]v[x/νx.α([[E]]v)] if σ = ν

where µx.α([[E]]v) =
∧

{a|a ≥ α([[E]]v[x/a])} and
νx.α([[E]]v) =

∨

{a|a ≤ α([[E]]v[x/a])}.

Notice in the above definition that we present an empty equation system as ε, and we
denote the greatest lower bound of the complete lattice ({0, 1},≤) by operator

∧

and
the least upper bound by

∨

.

Example 1. Let X be the set {x1, x2, x3} and assume we are given a Boolean equation
system

E1 ≡ ((νx1 = x2 ∧ x1)(µx2 = x1 ∧ x3)(νx3 = x3)).

The solution [[E1]]v of E1 is given by the valuation v : X → {0, 1} defined by v(xi) = 1
for i = 1, 2, 3.

3 Properties of Boolean Equation Systems

In this section, we discuss important notions of Boolean equation systems. We also
state some facts about Boolean equation systems, which turn out to be useful in the
computation of their solutions.

4 Misa Keinänen and Ilkka Niemelä

The size of Boolean equation systems is inductively defined as |ε| = 0 and |(σx =
α)E| = 1 + |α|+ |E|, where |α| is the number of variables and constants in α.

A Boolean equation system E is in standard form if each right-hand side expression
αi consists of a disjunction xi ∨ xj , conjunction xi ∧ xj , or a single variable xi. As
pointed out in [13], for each system E there is another system E ′ in standard form such
that E ′ preserves the solution of E and has size linear in the size of E . We may thus
restrict to standard form Boolean equation systems.

We say that a variable xi depends on variable xj , if αi contains a reference to
xj , or to a variable xk such that xk depends on xj . We say that a variable xi is self-
dependent, if xi depends on itself such that no variable xj with j < i occurs in this
chain of dependencies. It is said that two variables xi and xj are mutually dependent
if xi depends on xj and vice versa. A Boolean equation system is alternation free if
xi and xj are mutually dependent implies that σi = σj holds. Otherwise, the Boolean
equation system is said to be alternating.

Example 2. Consider the Boolean equation system E1 of Example 1. The system E1
is in standard form and is alternating, because it contains alternating fixed points with
mutually dependent variables having different signs, like x1 and x2 with σ1 6= σ2. The
variables x1 and x3 of E1 are self-dependent.

The variables of a standard form Boolean equation system can be partitioned in
blocks such that any two distinct variables belong to the same block iff they are mutually
dependent. The dependency relation among variables extends to blocks such that block
Bi depends on another block Bj if some variable occurring in block Bi depends on
another variable in block Bj . The resulting dependency relation among blocks is an
ordering. In Mader [13], there are two useful lemmas (Lemma 6.2 and Lemma 6.3)
which allow us to solve all blocks of standard form Boolean equation systems one at a
time, starting from the last block and then substituting the solutions to the blocks higher
up in the ordering. Alternation-free blocks of standard form Boolean equation systems
can be trivially solved in linear time in the size of the blocks. Thus, we restrict here
to devise a technique to solve alternating blocks of standard form Boolean equation
systems, for which no polynomial time solution technique is known.

We call an equation σixi = αi disjunctive if its right-hand side αi is a disjunction.
A standard form Boolean equation system is said to be disjunctive if all its equations are
either disjunctive equations or single variables. Similarly, a Boolean equation σixi =
αi is conjunctive if its right-hand side αi is a conjunction. A standard form Boolean
equation system is conjunctive if all its equations are conjunctive or single variables.

The following lemmas form the basis for our answer set programming based tech-
nique to solve standard form Boolean equation systems with alternating fixed points.
For a disjunctive (conjunctive respectively) form Boolean equation systems we have
that:

Lemma 1. Let E be a disjunctive (conjunctive) Boolean equation system in standard
form. Let xi be any variable of E , and v the solution E . Then the following are equiva-
lent:

1. v(xi) = 1 (or v(xi) = 0 respectively)

Solving Equation Systems in Answer Set Programming 5

2. there is a variable xj in E such that σj = ν (σj = µ) and:
(a) xi depends on xj and
(b) xj is self-dependent

From each Boolean equation system E containing both disjunctive and conjunctive
equations we may construct a new Boolean equation system E ′, which is either in a
disjunctive or in a conjunctive form. In order to obtain from E a disjunctive form sys-
tem E ′, we remove in every conjunctive equation of E exactly one conjunct; otherwise
the system E is unchanged. The dual case is similar. For any standard form Boolean
equation system having both disjunctive and conjunctive equations we have the prop-
erty:

Lemma 2. Let E be a standard form Boolean equation system, xi any variable occur-
ring in E , and v the solution of E . Then the following are equivalent:

1. v(xi) = 0 (or v(xi) = 1 respectively)
2. from E can be constructed a disjunctive (conjunctive) system E ′ with the solution

v′ s.t. v′(xi) = 0 (v′(xi) = 1 respectively).

In Section 5 we will see the application of the above lemmas to give a compact encod-
ing of the problem of solving alternating Boolean equation systems as the problem of
finding certain stable models of normal logic programs.

4 Stable Models of Normal Logic Programs

For encoding Boolean equation systems we use normal logic programs with the stable
model semantics [7]. A normal rule is of the form

a← b1, . . . , bm, not c1, . . . , not cn. (1)

where each a, bi, cj is a ground atom. Models of a program are sets of ground atoms. A
set of atoms ∆ is said to satisfy an atom a if a ∈ ∆ and a negative literal not a if a 6∈ ∆.
A rule r of the form (1) is satisfied by ∆ if the head a is satisfied whenever every body
literal b1, . . . , bm, not c1, . . . , not cn is satisfied by ∆ and a program Π is satisfied by
∆ if each rule in Π is satisfied by ∆.

Stable models of a program are sets of ground atoms which satisfy all the rules of
the program and are justified by the rules. This is captured using the concept of a reduct.
For a program Π and a set of atoms ∆, the reduct Π∆ is defined by

Π∆ = {a← b1, . . . , bm. | a← b1, . . . , bm, not c1, . . . , not cn. ∈ Π,
{c1, . . . , cn} ∩∆ = ∅}

i.e., a reduct Π∆ does not contain any negative literals and, hence, has a unique subset
minimal set of atoms satisfying it.

Definition 3. A set of atoms ∆ is a stable model of a program Π iff ∆ is the unique
minimal set of atoms satisfying Π∆.

6 Misa Keinänen and Ilkka Niemelä

We employ two extensions which can be seen as compact shorthands for normal rules.
We use integrity constraints, i.e., rules

← b1, . . . , bm, not c1, . . . , not cn. (2)

with an empty head. Such a constraint can be taken as a shorthand for a rule

f ← not f, b1, . . . , bm, not c1, . . . , not cn.

where f is a new atom. Notice that a stable model ∆ satisfies an integrity constraint (2)
only if at least one of its body literals is not satisfied by ∆.

For expressing the choice of selecting exactly one atom from two possibilities we
use choose-1-of-2 rules on the left which correspond to the normal rules on the right:

1 {a1, a2} 1. a1 ← not a2.
a2 ← not a1.
← a1, a2.

Choose-1-of-2 rules are a simple subclass of cardinality constraint rules [14]. The
Smodels system (http://www.tcs.hut.fi/Software/smodels/) provides an implementa-
tion for cardinality constraint rules and includes primitives supporting directly such
constraints without translating them first to corresponding normal rules.

5 Solving Boolean Equation Systems with Stable Models

The overall idea of our approach is as follows. Given a standard form Boolean equation
system E , we partition its variables into blocks so that variables are in the same block
iff they are mutually dependent. The partition can be constructed in linear time on the
basis of the dependencies between the variables. Like argued in Section 3, the variables
belonging to the same blocks can be solved iteratively one block at a time.

If all variables in a single block have the same sign, i.e. the block is alternation-
free, the variables in this block can be trivially solved in linear time. So we only need
to concentrate on solving alternating blocks containing mutually dependent variables
with different signs. Consequently, we present here a technique to solve an alternating
Boolean equation system which applies Lemmas 1-2 from Section 3.

In order to reduce the resolution of alternating Boolean equation systems to the
problem of computing stable models of logic programs we define a translation from
equation systems to normal logic programs. Consider a standard form, alternating Boolean
equation system E and a variable xk of E . We construct a logic program Π(E , xk) which
captures the solution v(xk) of xk. Suppose that the number of conjunctive equations of
E is less than (or equal to) the number of disjunctive equations, or that no conjunction
symbols occur in the right-hand sides of E . The dual case goes along exactly the same
lines and is omitted.3 The idea is that Π(E , xk) is a ground program which is polyno-
mial in the size of the equation system E . We give a compact description of Π(E , xk)

3 This is the case where the number of disjunctive equations of E is less than the number of
conjunctive equations, or where no disjunction symbols occur in the right-hand sides of E .

Solving Equation Systems in Answer Set Programming 7

as a program with variables. This program consists of the rules

solve(k). (3)
depends(Y)← dep(X, Y), solve(X). (4)
depends(Y)← depends(X), dep(X, Y). (5)
reached(X, Y)← nu(X), dep(X, Y), Y ≥ X. (6)
reached(X, Y)← reached(X, Z), dep(Z, Y), Y ≥ X. (7)
← depends(Y), reached(Y, Y), nu(Y). (8)

extended for each equation σixi = αi of E by

– dep(i, j)., if αi = xj

– dep(i, j). and dep(i, k)., if αi = (xj ∨ xk)
– 1 {dep(i, j), dep(i, k)} 1., if αi = (xj ∧ xk)

and by nu(i). for each variable xi such that σi = ν.
The idea is that for the solution v of E , v(xk) = 0 iff Π(E , xk) has a stable model.

This is captured in the following way. The system E is turned effectively to a disjunc-
tive system by making a choice between dep(i, j) and dep(i, k) for each conjunctive
equation xi = (xj ∧xk). Hence, each stable model corresponds to a disjunctive system
constructed from E and vice versa. By Lemma 2 v(xk) = 0 iff there is such a disjunc-
tive system for which v′(xk) = 0. By Lemma 1 for a disjunctive system v′(xk) = 1
iff there is a variable xj such σj = ν and xk depends on xj and xj is self-dependent.
The program Π(E , xk) effectively rules out each stable model where v′(xk) = 1 in the
corresponding disjunctive system. This is done by eliminating models where there is a
variable xj such that σj = ν and xk depends on xj and xj is self-dependent. Hence,
Π(E , xk) has a stable model iff there is a disjunctive system constructed from E such
that v′(xk) 6= 1, i.e., v′(xk) = 0. Hence, we have our main result.

Theorem 1. Let E be standard form, alternating Boolean equation system. Let xk be
any variable and v the solution of E . Then v(xk) = 0 iff Π(E , xk) has a stable model.

Similar property holds also for the dual program, which allows us to solve all alternating
blocks of standard form Boolean equation systems.

Although Π(E , xk) is given using variables, for the theorem above a finite ground
instantiation of it is sufficient. For explaining the ground instantiation we introduce
a relation depDom such that depDom(i, j) holds iff there is an equation σixi = αi

of E with xj occurring in αi. Now the sufficient ground instantiation is obtained by
substituting variables X, Y in the rules (4–6) with all pairs i, j such that depDom(i, j)
holds, substituting variables X, Y, Z in rule (7) with all triples l, i, j such that nu(l) and
depDom(i, j) hold and variable Y in rule (8) with every i such that nu(i) holds. This
means also that such conditions can be added as domain predicates to the rules without
compromising the correctness of the translation. For example, rule (7) could be replaced
by reached(X, Y) ← nu(X), depDom(Z, Y), reached(X, Z), dep(Z, Y), Y ≥ X.
Notice that such conditions make the rules domain restricted as required, e.g., by the
Smodels system.

8 Misa Keinänen and Ilkka Niemelä

ν x1 = x2 ∧ xn

µ x2 = x1 ∨ xn

ν x3 = x2 ∧ xn

µ x4 = x3 ∨ xn

. . .

ν xn−3 = xn−4 ∧ xn

µ xn−2 = xn−3 ∨ xn

ν xn−1 = xn−2 ∧ xn

µ xn = xn−1 ∨ xn/2

for n ∈ 2N

Problem (n) Time (sec)
1800 27.9
2000 34.9
2200 42.3
2400 50.5
2600 59.8

Fig. 1. The Boolean equation system in [13, p.91] and experimental results.

6 Experiments

In this section, we describe some experimental results on solving alternating Boolean
equations systems with the approach presented in the previous section. We demonstrate
the technique on two series of examples. The times reported are the average of 3 runs
of the time for Smodels 2.27 to find the solutions as reported by the /usr/bin/time
command on a 2.0Ghz AMD Athlon running Linux.

The first series deals with solving alternating Boolean equation systems of increas-
ing size and alternation depth. The problem is taken from [13, p.91] and consists of
finding solution v(x1) of the left-most variable x1 occurring in a sequence of alternat-
ing fixed point equations given in Fig.1. The example is such that a Boolean equation
system with n equations has the alternation depth n. The solution of the system is such
that v(x1) = 1 which can be obtained by determing the existence of a stable model
of the corresponding logic program. The experimental results are summarised in Fig.1.
Our benchmarks are essentially the only results in the literature for alternating Boolean
equation systems with the alternation depth n ≥ 4 of which we are aware. Notice that
our benchmarks have the alternation depths 1800 ≤ n ≤ 2600. Like pointed out in
[13], known algorithms based on the approximation technique are exponential in the
size of the equation system in Fig.1, because a maximal number of backtracking steps
is always needed to solve the left-most equation.

In second series of examples we used a set of µ-calculus model checking problems
taken from [12], converted to alternating Boolean equation systems. The problems con-
sist of checking a µ-calculus formula of alternation depth 2, on a sequence of models
Mk = (S, A,−→) of increasing size (see Fig.2 in [12]). Suppose that all transitions
of process Mk in [12] are labeled with a and we want to check, at initial state s, the
property that a is enabled infinitely often along all infinite paths. This is expressed with
alternating fixed point formula:

φ ≡ νX.µY.([−].(〈a〉true ∧X) ∨ Y) (9)

which is true at initial state s of the process Mk. The problem can be directly encoded
as the problem of solving the corresponding alternating equation system in Fig.2. The
results are given in Fig. 2. The columns are:

Solving Equation Systems in Answer Set Programming 9

ν xs = ys

µ ys =
∧

s′∈∇(t,s)

zs′ ∨ ys

µ zs =
∨

s′∈∇(a,s)

true ∧ xs

for all s ∈ S.

where ∇(t, s) := {s′|s
i

−→ s′ ∧ i ∈ A}
and ∇(a, s) := {s′|s

a
−→ s′}.

Problem |s| | −→ | n Time (sec)
M500 503 505 1006 1.9
M1000 1003 1005 2006 7.3
M1500 1503 1505 3006 16.4

Fig. 2. The Boolean equation system and experimental results.

– Problem: Process Mk = (S, A,−→) from [12].
– |S|: Number of states in Mk.
– | −→ |: Number of transitions in Mk.
– n: Number of equations in the corresponding Boolean equation system.
– Time: The time in seconds to solve variable xs.

The benchmarks in [12] have a quite simple structure and no general results can be
drawn from them. A more involved practical evaluation of our approach is highly de-
sirable, and benchmarking on real world systems is left for future work.

7 Conclusion

We presented an aswer set programming based method for computing the solutions of
alternating Boolean equation systems. We developed a novel characterization of solu-
tions for variables in Boolean equation systems and devised a mapping from systems
with alternating fixed points to normal logic programs. Our translation is such that the
solution of a given variable of an equation system can be determined by the existence
of a stable model of the corresponding logic program. This result provides the basis
to verify µ-calculus formulas with alternating fixpoints, using answer set programming
techniques.

The experimental results indicate that stable model computation is quite competitive
approach to solve Boolean equations systems in which the number of alternation is
relatively large. The alternation of fixpoint operators give more expressive power in µ-
calculus, but all known model checking algorithms are exponential in the alternation.
Consequently, our approach is expected to be quite effective in the verification tasks,
where there is a need of formulas with great expressive power.

Acknowledgements. We would like to thank Keijo Heljanko for valuable discus-
sions. The financial supports of Academy of Finland (project 53695), Emil Aaltonen
foundation and Helsinki Graduate School in Computer Science and Engineering are
gratefully acknowledged.

10 Misa Keinänen and Ilkka Niemelä

References

1. H.R. Andersen. Model checking and Boolean graphs. Theoretical Computer Science, 126:3-
30, 1994.

2. A. Arnold and D. Niwinski. Rudiments of µ-calculus. Studies in Logic and the foundations
of mathematics. Volume 146, Elsevier, 2001.

3. G. Bhat and R. Cleaveland. Efficient local model-checking for fragments of the modal µ-
calculus. In Proceedings of the Int. Conf. on Tools and Algorithms for the Construction and
Analysis of Systems, Lecture Notes in Computer Science 1055, pages 107-126, Springer
Verlag 1996.

4. G. Delzanno and A. Podelski. Model checking in CLP. In Proceedings of the Int. Conf.
on Tools and Algorithms for the Construction and Analysis of Systems, Lecture Notes in
Computer Science 1579, pp. 223-239, 1999.

5. E.A. Emerson, C. Jutla and A.P. Sistla. On model checking for fragments of the µ-calculus.
In C. Courcoubetis, editor, Fifth Internat. Conf. on Computer Aided Verification, Elounda,
Greece, Lecture Notes in Computer Science 697, pages 385-396, Springer Verlag, 1993.

6. E.A. Emerson, C. Jutla, and A.P. Sistla. On model checking for the µ-calculus and its frag-
ments. Theoretical Computer Science 258:491-522, 2001.

7. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In Proceed-
ings of the 5th International Conference on Logic Programming, pages 1070–1080, Seattle,
USA, August 1988. The MIT Press.

8. K. Heljanko and I. Niemelä. Bounded LTL model checking with stable models. Forth-
coming in Theory and Practice of Logic Programming (TPLP), Cambridge University Press,
2003.

9. M. Jurdzinski. Deciding the winner in parity games is in UP ∩ co − UP . Information Pro-
cessing Letters, 68:119-124, 1998.

10. D. Kozen. Results on the propositional µ-calculus. Theoretical computer Science 27:333-
354, 1983.

11. K. N. Kumar, C. R. Ramakrishnan, and S. A. Smolka. Alternating fixed points in Boolean
equation systems as preferred stable models. In proceedings of 17th International Conference
of Logic Programming, Lecture Notes in Computer Science 2237, 2001.

12. X. Liu, X, C.R. Ramakrishnan and S.A. Smolka. Fully Local and Efficient Evaluation of
Alternating Fixed Points. In B. Steffen, editor, Proceedings of TACAS’98, Lecture Notes in
Computer Science 1384, Springer Verlag, 1998.

13. A. Mader. Verification of Modal Properties using Boolean Equation Systems. PhD thesis,
Technical University of Munich, 1997.

14. P. Simons, I. Niemelä, and T. Soininen. Extending and implementing the stable model se-
mantics. Artificial Intelligence, 138(1–2):181–234, 2002.

15. B. Vergauwen and J. Lewi. A linear algorithm for solving fixed-point equations on transition
systems. In J.-C. Raoult, editor, CAAP’92, Lecture Notes Computer Science 581, pages 321-
341, Springer Verlag, 1992.

16. B. Vergauwen and J. Lewi. Efficient Local Correctness Checking for Single and Alternating
Boolean Equation Systems. In proc. of ICALP’94.

