
SEDatalog: A Set Extension of Datalog

Qing Zhou Ligong Long
Software Institute Software Institute

Zhongshan University Zhongshan University
Guangzhou,Guangdong Guangzhou,Guangdong

510275,P.R. China 510275,P.R. China
lnszq@zsulink.zsu.edu.cn longligong@163.net

Abstract

In this paper we propose an extension, SEDatalog, of Datalog so that sets can be constructed naturally in logic program-
ming. In SEDatalog, sets can be defined by statements so it has a strong capability in creating sets, and we can use sets in
SEDatalog exactly in the way we use them in mathematics or other fields. With the notion of ”order” introduced in this paper,
confusions among set construction levels can be avoid in SEDatalog. Three deductive rules are also introduced in this paper,
which make SEDatalog being able to do deductions and to make programs even when sets are involved in deductions. The
syntactical description and the semantic interpretation of SEDatalog are comprehensively discussed in detail. The soundness
and completeness theorem of SEDatalog is proved, which provides a solid foundation of SEDatalog.

1 Introduction

In this paper we propose an extension, SEDatalog, of Datalog so that sets can be constructed in logic programming. As
the extension is entirely based on what is common in every logic programming language, the extension could apply to Prolog
and other logic programming languages almost without any modification. It is even theoretically possible that the extension
could also apply to other categories of programming languages, such asC++.

There have been quite a number of papers published in the field of complex object logic programming. At the beginning
of 90s,LPS(Logical Programming with Sets) andLDL (logical Data language) were proposed in [3] and [8]. InLDL, the
operators ”set grouping< x >” and ”set enumeration{x1, x2, ..., xn}” were used to construct sets. The ”set enumeration
{x1, x2, ..., xn}” enumerates elements in a set; and the ”set grouping< x >” collect those elements with certain properties
into a set. Obviously, the ”set enumeration{x1, x2, ..., xn}” can only construct finite sets. As there was no syntactical
restriction on the levels of the set construction inLDL, the ”set grouping< x >” can only be used to verify those objects in
the set which are proved having the required properties; all the others are assumed not with the required properties, and hence
are not in the set. So inLDL, only finite sets can actually constructed, and the power of defining sets are quite limited.LPS
could only deal with those sets which contains individual objects not other sets, and it does not have a way to construct sets,
instead, it uses statements such asA : −(∀x1 ∈ X1)...(∀xn ∈ Xn)(B1 ∧ ... ∧ Bn) to simulate the operator ”set grouping”
in LDL. Soon after that, the Complex Object Language (COL) [1] was proposed. This language uses a special predicate∈
andf(x) 3 a to collect all elements of set-valued functionf(x) i.e. f(x) contains all elementsa satisfyingf(x) 3 a. Every
variable in this language has to be assigned type to distinguish different objects, this could avoid confusion on the levels of
set construction. But it also obvious that the way of defining sets inCOL is not like what we are used when we want to define
a set in other areas. Also because the restriction on definingf(x) 3 a is similar toLDL, it has also a limited power of set
constructions. Later two approaches were made:{log} [4] and SuRE[6]. {log} uses constructors{a|b} to construct sets
{a} ∪ b, so it can only accept very limited amount of sets.SuREuses⊇ andf(x) ⊇ e, wheree is an expression, to collect all
elements in expressione into f(x). In addition to that, it has constructors{a/b} and{a\b}which indicate{a}∪b for a /∈ b or
a is possibly inb. Still it is quite obvious that the power of set construction inSuREis weak. Finally,{Relationlog} [10] were
proposed in 1998. This approach takes type, types and schema to avoid confusions on the levels of set constructions. Sets in
it are partial sets and complete sets, it has a grouping operator to convert partial sets into complete sets. Its set constructor is
similar toLDL.

The above approaches certainly contribute a lot in the research of complex object logic programming, but they have some
obvious disadvantages. First, they are limited in defining sets, and most of them only allow finite sets or sets of individuals to
be constructed. But in many cases when we want to use sets in programming, we might have to consider sets such as the set
of natural numbers, which is infinite, or the set of classes in a school, which is a set of sets as ”a class” is a set of students.
Second, the ways of using sets in these approaches is different from the way we define sets when we are working in other
areas. Most time when we want to use a set we define it by using a statement, for example, the set of students can be defined
as{x : x has registered in a school}, instead of inserting students’ names into the set one by one. But in all the approaches
above it is not possible to define sets in this way. Finally, all the approaches above need an assumption that any object without
proving in a set is not in the set, i.e. a ”closed world” assumption. Practically, this could causes a lot of extra work: if a set are
found having an element which was not in it before from the old information, all the knowledge in database concerning the
set have to be modified. As now a lot of information is put into database everyday this modification could become a regular
job with this assumption.

So in our opinion, a programming language with sets has to satisfy: 1. It is convenient to use; 2. it can construct sets as
much as possible; 3. the ”closed world” assumption is no longer needed, i.e. it has a least model for it.

Taking the considerations above, we intend to make it possible in this paper to create sets by using statements in SEDatalog,
i.e. we can define a setA such thatA = {x : p(x)} for every formulap in SEDatalog. By defining sets by statements we
can not only construct finite sets but also infinite sets or more complicated sets such as a set of sets with certain properties.
Also this is the way we define sets when we are working in mathematics, or in other areas. This definition, if without proper
restrictions, would involve confusions among set construction levels and would lead to Russell’s paradox. To avoid this, we
restrict the elements to be contained in a set to only those which already exist, thus helping achieve clear indication of a set
hierarchy to be constructed in SEDatalog. As hierarchies constructed this way are in line with the underlying principles of
the axiomatic set theory i.e.ZF , the Zermelo-Fraenkel theory, avoidance of such paradoxes as “the set of all sets” or “a set
containing itself” can be assured.

For this purpose we need an “order” for every set which indicates the level in which the set is constructed. Then statements
in Datalog can be used to define sets. We consider that these sets are of the first order. Using these sets and individuals in
Datalog, which are of order 0, we can construct a group of statements, which are not in Datalog in general, by which second
order sets can be defined. Continuing by this way, we may have all the sets constructed. To ensure avoidance of any possible
confusion in the construction, it is obvious that the construction levels of statements in SEDatalog are also needed to be
clearly indicated, that is, we have to give an order to every statement in SEDatalog, too. This means that every predicate in
SEDatalog can only allow those sets with order less than a constant integer (the order of the predicate) as its variables. So
every predicate in SEDatalog is a partial predicate, i.e. its domain can not contain any set which has the order larger than
or equal to the order of the predicate (cf. definitions in Section 2). This takes care of the problem mentioned in the last
paragraph.

In ZF , the complement of a set is not allowed, i.e. we can not take the complement operator to a set inZF . This
may be good enough for dealing with mathematical matters. But we are working in the field of computer science rather
than mathematics. In many cases, we need to consider the complement of a set. So the operator of complements has to
be allowed in SEDatalog. Then here comes a problem: the union of a set and its complement would be the set of all sets,
which would lead to Russell’s paradox. To solve this problem, let us take a look at how the concept of “the complement of
a set” is understood and used in our everyday life. When we say, for instance, “This is not a cat.”, this “This”, which is in
the complement of the set of cats, here does not refer to any group of dogs or the whole world of animals but only to the
thing we are pointing at, which is an individual instead of a group of something. This means that in our everyday life the
complement of a set is always considered in certain limited domain rather than the whole universe. From this view point,
all the complements of sets in SEDatalog are “relative complements”. With the concept “order” as defined in this paper, this
problem can easily be handled. LetA be a set in SEDatalog with the order= n, then the complement ofA contains all the
elements which are not inA and have orders less thann. (cf. definitions in Section 2.)

As discussed above, the notion ”order” is important in our work here, it is also quite technical for many users. But from
the work in this paper, one can easily find out that the order of a set or a formula can be automatically created, it can be put
into the background so that user even do not have to know the notion.

Another approach taken in literature is to consider higher order programming languages. With the sets defined by state-
ments, we can consider sets as statements and hence SEDatalog has a capability to represent higher order formulas if we think
that a set is identical with the formula which defines it.

The paper consists of three sections. The syntactical definitions of items in SEDatalog are given in the first section. Terms,
atoms, formulas and sets are defined associated with their orders to ensure that there is no confusion in their construction

levels. In addition to that, we introduce three deductive rules, which are obviously needed to make reasoning possible in
SEDatalog, and hence we can make programs with SEDatalog. The second section contains the semantic interpretations of
various items in SEDatalog. The semantic interpretation of SEDatalog is introduced and models of programs are also defined
in this section. In the last section we mainly discuss the soundness and completeness theorem on SEDatalog. This is a
necessary part of the paper, since it provides a heuristic justification of our work. Of course, the soundness and completeness
theorem must be built on the base of consistence. This is an extremely hard problem: after almost a century mathematicians
still can not prove the consistence ofZF . In this paper we do not try to work on this issue, instead, we just make our work
rely on the consistence ofZF . So we only prove those necessary axioms ofZF in SEDatalog. This is also included in this
section.

2 The Syntactical Description Of SEDatalog

2.1 Alphabet, terms, and atoms

Thealphabetof SEDatalog consists of:

(1) V ar andConst, which are the sets ofvariablesandconstantsof SEDatalog, respectively. HereV ar =
∞⋃

k=0

Vk, Const =
∞⋃

k=0

Ck, andV0 andC0 are the sets ofvariablesandconstantsof Datalog, respectively. For

each non-negative integern, Vn consists of countably many symbols calledn-th order variables;Cn consists of
countably many symbols calledn-th order constants. We useo(x) (=n) to denote the order ofx whenx ∈ Vn or
whenx ∈ Cn. We also require thatVm ∩ Vn = ∅, Cm ∩ Cn = ∅, if m 6= n for all m, n, andV ar ∩ Const = ∅.
(2) Symbols of functions. Eachn-ary function symbol isassociated witha couple of non-negative integers
〈k1, k2〉, wherek1 ≥ k2. One of these symbols is, for instance,f〈2,1〉.

(3) Symbols of predicates. Eachn-ary predicate symbol isassociated witha positive integer〈k〉. A predicate
symbolp of Datalog is associated with〈1〉. A symbol of predicate is, for instance,p〈2〉.

(4) Built-in predicate symbols. ∀m > 0,∈〈m〉, ∀m > 0,⊆〈m〉, and∀m ≥ 0,=〈m〉 must be included in SEData-
log language. To agree with our habits, we will use symbols∈,⊆ and= instead of∈〈m〉,⊆〈m〉 and=〈m〉. They
will be considered as abbreviations of the latters. Then the statement “x ∈ y” should be understood as “x ∈〈m〉 y
wherem is a fixed integer andm = o(y) + 1”; the statement “x ⊆ y” should be understood as “x ⊆〈m〉 y where
m is a fixed integer andm = o(y) + 1”; and the statement “x = y” stands for “x =〈m〉 y wherem is a fixed
integer andm = o(y) + 1”.

(5) Connectivesandpunctuation symbols.

As noted in the Introduction, we need the conceptorder in SEDatalog, which is a non-negative integer expressed aso(t)
for each termt in SEDatalog. If o(t) = n, thent is a n-th order term, in particular,0-th order terms representtermsin
Datalog. 0-th order ground terms representindividuals; andn-th(n > 0) order ground terms representn-th (n > 0) order
sets. The formal definitions of “terms” and their “orders” are given as in the following:

Definition 1 Termsand theirordersare defined as follows:
(1) x is an-th order term ando(x) = n, if x ∈ Vn;
(2) c is an-th order term ando(c) = n, if c ∈ Cn;
(3) If f is ann-ary function symbol associated with〈k1, k2〉, and for everyi, 1 ≤ i ≤ n, t[i] is a term witho(t[i]) ≤ k2,

thenf(t[1], ... , t[n]) is a term, ando(f(t[1], ... , t[n])) = k1.
A termt is ground if and only if no element ofV ar occurs int.

The concept “order” has to be extended to atoms as in the following definition:

Definition 2 Atomsand their orders are defined as follows:
(1) If p is a n-ary predicate symbol associated with〈k〉, and for everyi, 1 ≤ i ≤ n, t[i] is a term witho(t[i]) < k, then

p(t[1], ... , t[n]) is an atom ando(p(t[1], ... , t[n])) = k;
(2) If t[1] andt[2] are terms, ando(t[1]) < o(t[2]), thent[1] ∈ t[2] is an atom ando(t[1] ∈ t[2]) = o(t[2]) + 1;

(3) If t[1] andt[2] are terms, and0 <o(t[1]) ≤ o(t[2]), thent[1] ⊆ t[2] is an atom ando(t[1] ⊆ t[2]) = o(t[2]) + 1;
(4) If t[1] andt[2] are terms, ando(t[1]) = o(t[2]), thent[1] = t[2] is an atom ando(t[1] = t[2]) = o(t[2]) + 1.
If t[1], t[2], ..., t[n] are ground terms, then the atom is aground atom.

Remark 1 Note that in the above definitions, unlike Datalog, only those terms with a restriction (on orders) can be fed into
a function symbol or predicate symbol to form a term or an atom. Any expression, which does not satisfy this restriction, will
not be considered as a term or an atom in SEDatalog.

Remark 2 There is no function symbols in Datalog, but for the sake of completeness we add functions into SEDatalog.
Therefore in SEDatalog there are functions with orders> 0, but not functions of order0.

2.2 Formulas and sets

Since we want to create sets in SEDatalog as much as possible, we need to extend atoms to formulas to reach our goal. In
the present stage, formulas are only used to create sets, they will not take place in deductions.

Definition 3 Formulas are defined recursively as follows:
(1) An atom is a formula;
(2) If F , G are formulas, then¬F , F ∧ G, F ∨ G are formulas ando(¬F) = o(F), o(F ∧ G) = max({o(F), o(G)}),

o(F ∨G) = max({o(F), o(G)}).
A closed formulais a formula with no free variables.

Remark 3 In the above definition,F (x) ∨ G(x) might not be well defined from Definitions 1 and 2 for somex with order
o(F (x)) ≤ o(x) < o(G(x)) wheno(F (x)) < o(G(x)). To let the definition make sense, we consider it asF ′(x) ∨ G(x),
whereF ′(x) ↔ F (x) and o(F ′(x)) = o(G(x)), i.e. the domain ofF ′(x) is extended to all terms with the order up to
o(G(x)), althoughF ′(x)↔ F (x). The same treatment is made forF (x) ∧G(x).

Definition 4 For each formulaF (x) with only one free variablex, the set defined byF (x) is a constantCF (x) ∈ Cn with
n = o(F (x)) such that for allt, t ∈ CF (x) if and only ifF (t).

We often writeCF (x) = {t : F (t)} to indicate the definition ofCF (x).

Perhaps readers unfamiliar with recursive definitions might value a quick comment here. LetT0 = {t : t is a term
in Datalog}, F1 = {P : P is a formula in Datalog}. ThenT0 andF1 are well defined. For eachn ≥ 1, let Sn = {s :
∃P ∈ Fn, s = CP (x)}, andTn = Tn−1 ∪ {terms built of elements fromSn ∪ Tn−1 and functions symbols with the
associated couples of non-negative integers〈n, k2〉}, Fn+1 = {formulas built of elements fromTn and predicate symbols
with the associated positive integersn and¬,∨,∧}. Then for eachn, Tn andFn+1 are defined from those which were already

defined. So they are sound. Finally,S =
∞⋃

n=1
Sn is the class of all sets in SEDatalog, andF =

∞⋃
n=1

Fn is the class of all

formulas in SEDatalog. So the definition here is sound, not a “cycle” definition.
Directly from our definitions, it is not hard to see that for every formulaF (x), o(CF (x)) is a finite integer.

Remark 4 Note that in the above definition, the order of a set is the order of the formula which defines it, so the order of a
set can be automatically created when we know the order of the formula which defines it. Also since the order of a formula
can be easily found out from the orders of the predicates involved, it can be created automatically. So users do not have to
know the order of a set or a formula when he/she makes programs. It can be put into background.

2.3 Facts, rules and programs

Of course, from the title of this paper, we are presenting a set extension of Datalog. Then a natural question is what kinds
of deductive rules we could have in SEDatalog to guarantee that deductions can be done? Now we discuss this issue.

As an extension of Datalog, we first extend the deduction rule of Datalog to be used on statements which contain sets as
their variables. We call it “the ordinary rule”. In addition to this ordinary rule, we add two more deduction rules, “the universal
rule” and “the existential rule”. These two rules are needed since many properties of a set are determined by properties of
its elements. For example, (1) A set is a class “teacher” if everyone in the set teaches some courses in a school; (2) If a set
contains an element, then we say that it is not empty. So such deductions must be included in SEDatalog.

An important issue on deductions in logic programming is to deal with the negations. In this paper we do not consider this
problem. Then a difficulty arises: since the complement operator is allowed in SEDatalog, and the complement of a setA is
corresponding to the negation of the formula which definesA, the negation of the formula might be involved in a deduction
in which a formula might have the complement ofA as its entries. To avoid this problem, we simply take all the complements
of sets and all the negations of statements out of deductions (cf. definitions below.) and leave this problem to other papers.
Thus the complement of a set can only be represented in this paper, but they can not take place in deductions at the present
stage. This leads to:

Definition 5 Positive termsare defined recursively as follows:
(1) Each constant inC0 is a positive term;
(2) Each variable is a positive term;
(3) A formula is apositive formulaif it is built up from atoms and∧, ∨. If F (x) is a positive formula and each term

occurring inF (x) is a positive term, thenCF (x) ={x : x is a positive term andF (x) holds} is a positive term;
(4) A functionf is apositive functionif f(t[1], ... , t[n]) is positive whenevert[1], ... , t[n] are positive. Ift[1], ... , t[n] are

positive terms andf is a positive function, thenf(t[1], ... , t[n]) is a positive term.

Definition 6 A literal is an atom in which each term is a positive term.

Definition 7 A rule of SEDatalog is of the formH : −A1, ... , An wheren ≥ 0. The left hand side of: − is a literal, called
theheadof the rule, while the right hand side is a conjunction of literals, called thebodyof the rule .

A fact is a special rule, whose head is a ground literal and whose body is empty.

For convenience, we use the notationvars(T) to indicate all variables occurring inT , whereT is a term or a formula.
Thenvars is a mapping from the set of terms and formulas to the power set ofV ar. We useH(y) to represent a literal with
variabley andA(x) to represent a literal with variablex. Now we give the following three rules, which will be calledsafe.
They are the basic deductive rules in SEDatalog:

(1) Ordinary rule is of the form

H : −O A1, ... , An

wheren > 0, vars(H) ⊆ vars(A1 ∧ ... ∧An) ando(H) = o(A1 ∧ ... ∧An).
The informal semantics of this rule is to mean that “for every assignment to each variable, ifA1, ... ,An are true, thenH

is true”
(2) Universal rule is of the form

H(y) : −U A1(x), ... , Am(x), Am+1, ... , An

wherevars(H(y)) − {y} ⊆ vars(A1(x) ∧ ... ∧ Am(x) ∧ Am+1 ∧ ... ∧ An) − {x}, y 6= x, o(H(y)) > o(A1(x) ∧ ... ∧
Am(x) ∧Am+1 ∧ ... ∧An) andy ⊆ {x : A1(x) ∧ ... ∧Am(x) ∧Am+1 ∧ ... ∧An} .

The informal semantics of this rule is to mean that “if every elementx in y has propertiesA1(x), ... ,Am(x), theny has
the propertyH”.

In this case,y is calledof the universal property H.
(3) Existential rule is of the form

H(y) : −E A1(x1, ..., xk), ..., Am(x1, ..., xk), Am+1, ...An

wherevars(H(y))− {y} ⊆ vars(A1(x1, ... , xk) ∧ ... ∧ Am(x1, ... , xk) ∧ Am+1 ∧ ... ∧ An)− {x1, ... , xk}, y 6= x1, ... ,
y 6= xk, o(H(y)) > o(A1(x1, ... , xk) ∧ ... ∧Am(x1, ... , xk) ∧Am+1 ∧ ... ∧An) andx1 ∈ y, ... ,xk ∈ y.

The informal semantics of this rule is to mean that “if some elementsx1, ... , xk in y have propertiesA1(x1, ... , xk), ... ,
Am(x1, ... , xk), theny has the propertyH”.

In this case,y is calledof the existential property H.

Definition 8 A SEDatalogprogram is a finite sequence of rules.

Example 1 By this definition, following are SEDatalog programs:
(1) integer(x) : −O even(x)
int set(y) : −U integer(x) wherey ⊆ {t : integer(t)}

(2) working team(z) : −Eworker(x), worker(y), work together(x, y), wherex ∈ z, y ∈ z
area(z, s) : −O disc(z), y ⊆ z, radius(y), s = PI × y × y

Definition 9 A substitutionθ is a finite set of the form{x1/t1, ... , xn/tn}, wherex1, ... , xn are distinct variables and each
ti is a positive term such thatxi 6= ti, ando(ti) ≤ o(xi).

The set of variables{x1, ... , xn} is called thedomainof θ.
If t is a term, thentθ denotes the term which is obtained fromt by simultaneously replacing eachxi that occurs int by

the corresponding termti, if xi/ti is an element ofθ.
If L is a literal andLθ, which is obtained fromL by simultaneously replacing eachxi that occurs inL by the correspond-

ing termti, is also a literal, thenθ is a legal substitutionfor L
If r : H : −A1, ... , An is a rule andθ is a legal substitution forH, A1, ... ,An, thenθ is a legal substitution for the ruler
If eachti is ground, thenθ is aground substitution.

3 The semantic Interpretations of SEDatalog

Let M0 = 〈V,P0, T0〉 be an interpretation of Datalog, whereV is the universe ofM0; P0 is the set of the interpretations
of predicate symbols of Datalog;T0 is the set of interpretations of those ground atoms of Datalog which are interpreted as
true; respectively. We define:

U0 = V, and Un = Un−1 ∪ ℘(Un−1)

where℘(Un−1) is the power set ofUn−1, i.e. ℘(Un−1) = {A : A ⊆ Un−1}. Then we give the full description of the
interpretation of SEDatalog as follows:

An interpretationM of SEDatalog is a tuple:M = 〈U ,F ,P, T 〉, hereU =
∞⋃

k=0

Uk is theuniverseof M ; F is the set of

the interpretations of function symbols;P is the set of the interpretations of predicate symbols;T is the set of interpretations
of those ground literals which are interpreted as true, respectively, such that:

(1) Eachn-ary function symbolf〈k1,k2〉 is interpreted as a functionfM ∈ F : Un
k2
−→ Uk1 ;

(2) Eachn-ary predicate symbolq〈k〉 is interpreted as a predicateqM ∈ P, i.e. qM ⊆ Un
k , andq〈1〉 is interpreted like in

M0, i.e. a predicateqM ∈ P0;
Especially,∈〈m〉is the membership relation between elements ofUm−1 and elements ofUm,⊆〈m〉is the inclusion relation

between elements ofUm, and=〈m〉is the equal relation onUm.
(3) Each constantc in Cn (n > 0) is interpreted as an object (set)M(c) of Un; and each constantc in C0 is interpreted

like in M0, i.e. an object (individual)M(c) of U0;
(4) A ground termf(t[1], ... , t[n]) is interpreted asM(f(t[1], ..., t[n])) = fM (M(t[1]), ... , M(t[n]));
(5) A ground atomq(t[1], ..., t[n]) is interpreted asM(q(t[1], ..., t[n])) ⇐⇒ qM (M(t[1]), ... , M(t[n]));
(6)
T1 ⊆ T0 ∪ {qM (M(t[1]), ... ,M(t[n])) : q<1>(t[1], ... , t[n]) is a ground literal};
Tk ⊆ Tk−1 ∪ {qM (M(t[1]), ... ,M(t[n])) : q<k>(t[1], ... , t[n]) is a ground literal} such that:
i) M(c ∈ CA(x))) ∈ Tk+1 if and only if M(A(c)) ∈ Tk ;
ii) M(c ∈ CF (x)∧G(x)) ∈ Tk if and only if M(c ∈ CF (x)) ∈ Tk andM(c ∈ CG(x)) ∈ Tk ;
iii) M(c ∈ CF (x)∨G(x)) ∈ Tk if and only if M(c ∈ CF (x)) ∈ Tk or M(c ∈ CG(x)) ∈ Tk ;
iv) M(CF (x) ⊆ CG(x)) ∈ Tk if and only if for all x ∈ U , M(F)(x) ∈ Tk implies thatM(G)(x) ∈ Tk,

and Finally, we setT =
∞⋃

k=1

Tk.

With the interpretation of SEDatalog described above, our next job is to give the description of the model of a SEDatalog
program:

Let P be a program. An interpretationM = 〈U ,F ,P, T 〉 of SEDatalog is amodelof P if and only if

(1) If A is a fact inP , thenM(A) ∈ T ;
(2) If r : H : −O A1, ... , An is an ordinary rule inP , then for each ground and legal substitutionθ with domain(θ) ⊇

vars(r), if M(A1θ) ∈ T , ... ,M(Anθ) ∈ T , thenM(Hθ) ∈ T ;
(3) If r : H(y) : −U A1(x), ... , Am(x), Am+1, ... , An is a universal rule inP , then for each ground and legal substitution

θ with domain(θ) = vars(r) − {x}, if M(Am+1θ) ∈ T , ... , M(Anθ) ∈ T , andM(yθ ⊆ CA1(x)θ) ∈ T , ... , M(yθ ⊆
CAm(x)θ) ∈ T , thenM(H(y)θ) ∈ T , hereM(yθ ⊆ CAi(x)θ) ∈ T , 1 ≤ i ≤ m, means that for any ground and legal
substitutionθ′ with x in its domain,M((Ai(x)θ)θ′) ∈ T wheneverM(((x ∈ y)θ)θ′) ∈ T ;

(4) If r : H(y) : −E A1(x1, ... , xk), ... , Am(x1, ... , xk), Am+1, ... , An is a existential rule inP , then for each ground and
legal substitutionθ with domain(θ) = vars(r), if M(A1(x1, ... , xk)θ) ∈ T , ... ,M(Am(x1, ... , xk)θ) ∈ T , M(Am+1θ) ∈
T , ... ,M(Anθ) ∈ T , andM((x1 ∈y)θ) ∈ T , ... ,M((xk ∈y)θ) ∈ T thenM(H(y)θ) ∈ T .

Definition 10 LetA be a ground literal. An interpretationM = 〈U ,F ,P, T 〉 is amodelof A if and only ifM(A) ∈ T .

4 Discussions On Theoretical Issues Of SEDatalog

A very important problem in dealing with sets is, of course, the consistence. As indicated in the Introduction, we do not
intend to prove the consistence of SEDatalog, instead, we prove that axioms ofZF hold in SEDatalog. Among the axioms
of ZF, some of them such as the axiom of infinity, asserts the existence of certain sets. These axioms are important for
mathematics, but not important to the consistence. So we do not need to have such axioms in SEDatalog, and hence they are
not under our consideration. Similar ideals on this issue were represented in [4] and [7].

(1) Axiom of Extensionality
If o(X) > 0 ando(Y) > 0, thenX = Y ↔ ∀t(t ∈ X ↔ t ∈ Y)
Proof. By definition there exist formulasF (x) andG(y) such thatX = CF (x) andY = CG(y).
Thent ∈ X ↔ F (t) andt ∈ Y ↔ G(t). SoX = Y ↔ CF (x) = CG(x) ↔ (F (x) ↔ G(x)) ↔ ∀t(t ∈ X ↔ t ∈

Y)
(2) Axiom of Regularity
If o(X) > 0 and∃a(a ∈ X)), then∃Y (Y ∈ X ∧ ∀Z(Z ∈ Y → Z /∈ X))
Proof. Becauseo(X) > 0 and{o(x) : x ∈ X} ⊂ N is not empty,min({o(x) : x ∈ X}) exists.
ChooseY ∈ X such thato(Y) = min({o(x) : x ∈ X}). Then
i) if o(Y) = 0, there is noZ ∈ Y
ii) if o(Y) > 0, then for everyZ ∈ Y , o(Z) < o(Y). But we also have that for everyx ∈ X, o(x) ≥ min({o(x) : x ∈

X}) = o(Y). SoZ /∈ X.
(3) Axiom of Replacement
If o(X) > 0, then(∀x(x ∈ X)∃!yP (x, y) → ∃Y (o(Y) > 0 ∧ ∀y(y ∈ Y ↔ ∃z(z ∈ X ∧ P (z, y)))))
Proof. By definition there exists a formulaF (x) such thatX = CF (x). Let Q(y) is defined by the ruleQ(y) : −O

F (z), P (z, y) andY = CQ(y).
ThenY is the witness of the consequence.
Since we have proved axioms ofZF in SEDatalog, it can be assumed that SEDatalog is consistent, and hence it makes

sense to consider the soundness and completeness theorem of SEDatalog. In order to prove this let us introduce some related
notions first.

Definition 11 A ground literalA is aconsequenceof a SEDatalog programP (denoted byP |= A) if and only if each model
M of P is also a model ofA.

Definition 12 A ground literalA is inferred from a SEDatalog programP (denoted byP ` A) is defined as follows:
(1) If A = H andH is a fact inP , thenP ` A;
(2) If there exists an ordinary ruler : H : −O A1, , An in P and a ground and legal substitutionθ, wheredomain(θ) =

vars(r), such thatA = Hθ andP ` A1θ, ... ,P ` Anθ, thenP ` A;
(3) If there exists a universal ruler : H(y) : −UA1(x), ... , Am(x), Am+1, ... , An in P and a ground and legal substitution

θ, wheredomain(θ) = vars(r)− {x}, such thatA = H(y)θ andP ` Am+1θ, ... ,P ` Anθ, andP ` yθ ⊆ CA1(x)θ, ... ,
P ` yθ ⊆ CAm(x)θ, thenP ` A, hereP ` yθ ⊆ CAi(x)θ, 1 ≤ i ≤ m, means that for any ground and legal substitutionθ′

with x in its domain,P ` (Ai(x)θ)θ′ wheneverP ` ((x ∈ y)θ)θ′;

(4) If there exists an existential ruler : H(y) : −E A1(x1, ... , xk), ... , Am(x1, ... , xk), Am+1, ... , An in P and a ground
and legal substitutionθ, wheredomain(θ) = vars(r), such thatA = H(y)θ andP ` A1(x1, ... , xk)θ, ... ,P ` Am(x1, ...
, xk)θ, P ` Am+1θ, ... ,P ` Anθ, P ` x1θ ∈ yθ, ... ,P ` xkθ ∈ yθ, thenP ` A.

Let infer(P) = {A : P ` A} andcons(P) = {A : P |= A}. It is easy to show that,cons(P) =
⋂
M

{A : M =

〈U ,F ,P, T 〉 is a model ofP andM(A) ∈ T .}.
Theorem 1 (The Soundness and Completeness Theorem)infer(P) = cons(P).

Proof. (a) infer(P) ⊆ cons(P)
AssumeM = 〈U ,F ,P, T 〉 is a model ofP. Given a statementA, we prove, by induction on the order of the statementA,

thatP ` A ⇒ M(A) ∈ T .
Induction Base: If P ` A ando(A) = 1, sinceA is a statement of Datalog,P |= A, M(A) ∈ T0 ⊂ T , by the soundness

of Datalog.
Induction Step: Suppose thatP ` A ⇒ M(A) ∈ T for all A with o(A) ≤ i, and assume thatP ` A ando(A) = i + 1.

Then we prove, by induction on the proof tree, that

M(A) ∈ T . (∗)
Induction Base: A is a fact inP , by the definition of models,M(A) ∈ T .
Induction Step: If A is obtained by using deduction rules of SEDatalog, we have three possibilities:
(1) Let A be obtained by an ordinary ruler : H : −O A1, ... , An. Then inP there exists a ground and legal substitution

θ, wheredomain(θ) = vars(r), such thatA = Hθ andP ` A1θ, ... ,P ` Anθ. By the induction hypothesis of the proof
treeM(A1θ) ∈ T , ... ,M(Amθ) ∈ T . By the definition of models,M(A) ∈ T .

(2) Let A be obtained by a universal ruler : H(y) : −U A1(x), ... , Am(x), Am+1, ... , An. Then in P there exists
a ground and legal substitutionθ, wheredomain(θ) = vars(r) − {x}, such thatA = H(y)θ andP ` A1(x)θ, ... ,
P ` Am(x)θ, P ` Am+1θ, ... ,P ` Anθ; also from the conditions of the universal rule, we have thatP ` yθ ⊆ CA1(x)θ,
... , P ` yθ ⊆ CAm(x)θ. By the induction hypothesis of the proof treeM(A1θ) ∈ T , ... , M(Anθ) ∈ T , and since
P ` yθ ⊆ CAk(x)θ, 1 ≤ k ≤ m, we have that for any ground and legal substitutionθ′ with x in its domain,P` ((x ∈ y)θ)θ′

implies thatP ` (Ak(x)θ)θ′ for all 1 ≤ k ≤ m. Now it is easy to see thato(H(y)θ) > o(((x ∈ y)θ)θ′), o((Ak(x)θ)θ′), for
all 1 ≤ k ≤ m. Then by the induction hypothesis of the order, we have thatM((Ak(x)θ)θ′) ∈ T wheneverM(D(x)θ′) ∈ T ,
whereyθ = CD(x). Because of the arbitrary ofθ′, we have that for allx ∈ U , M(D)(x) ∈ T implies thatM(Akθ)(x) ∈ T .
SoM(yθ ⊆ CAk(x)θ) ∈ T by Definition 10. Then from the definition of the model ofP, M(A) ∈ T .

(3) LetA be obtained by an existential ruler : H(y) : −E A1(x1, ... , xk), ... , Am(x1, ... , xk), Am+1, ... , An. Then inP ,
there exists a ground and legal substitutionθ, wheredomain(θ) = vars(r), such thatA = H(y)θ andP ` A1(x1, ... , xk)θ,
... , P ` Am(x1, ... , xk)θ, P ` Am+1θ, ... , P ` Anθ; also from the conditions of the existential rule,P ` (x1 ∈ y)θ,
... , P ` (xk ∈ y)θ. By the induction hypothesis of the proof treeM(A1(x1, ..., xk)θ) ∈ T , ...M(Am(x1, ..., xk)θ) ∈
T ,M(Am+1θ) ∈ T , ...,M(Anθ) ∈ T . Also it is obvious thato(H(y)θ) > o((xi ∈ y)θ), o((Aj(x)θ)θ′), for all 1 ≤ i ≤ k
and 1 ≤ j ≤ m.So by the induction hypothesis of the order, we have thatM(D(xi)θ) ∈ T , where1 ≤ i ≤ k and
yθ = CD(x). SoM((x1 ∈y)θ) ∈ T , ... ,M(((xk ∈y)θ) ∈ T . From the definition of the model ofP, M(A) ∈ T .

So we have proved the claim(∗), i.e. for allA ∈ infer(P), M(A) ∈ T . Because of the arbitrary ofM , we have proved
thatinfer(P) ⊆ cons(P)

(b) infer(P) ⊇ cons(P)
AssumeM = 〈U ,F ,P, T 〉 is a model ofP . Let T ′ = {M(A) : A ∈ infer(P)} andM ′ = 〈U ,F ,P, T ′〉. Then it

is a routine exercise to prove thatM ′ is also a model ofP . So cons(P) =
⋂
M

{A : M = 〈U ,F ,P, T 〉 is a model ofP

andM(A) ∈ T .} ⊂ {A : M ′(A) ∈ T ′} = infer(P).
Soinfer(P) ⊇ cons(P).
The proof of the Theorem is completed.

References

[1] Abiteboul, S., Grumbach, S., COL: A Logic-based Language for Complex Objects, ACM TODS, 16(1),pp.1-30, 1991.

[2] Ceri, S., Gottlob, G., Tanca, L., Logic Programming and Databases, Springer Verlag, 1990.

[3] Chimenti, D., Gamboa, R., Krishnamurthy, R., Naqvi, S., Tsur, S., Zaniolo, C., The LDL System Prototype, IEEE
Transactions on Knowledge and Data Engineering, 2(1),pp.76-90, 1990.

[4] Dovier, A., Omodeo, E. G., Pontelli, E., Rossi, G.,{log}: A Language for Programming in Logic with Finite Sets, J. of
Logic Programming, 28(1),pp.1-44, 1996.

[5] Jana, D., Semantics of Subset-Logic Languages, Ph.D. Dissertation, Department of Computer Science, SUNY-Buffalo,
1994.

[6] Jayaraman, B., The SuRE Programming Framework, TR 91-011, Department of Computer Science, SUNY-Buffalo,
August 1991.

[7] Jayaraman, B., Jana, D., Set Constructors, Finite Sets, and Logical Semantics, J. of Logic Programming, 38,pp.55-77,
1999.

[8] Kuper, G. M., Logic Programming with Sets, J. of Computer and System Science, 41(1),pp.44-64, 1990.

[9] Levy, A., Basic Set Theory, Springer Verlag, 1979.

[10] Liu, M., Relationlog: A Typed Extension to Datalog with Sets and Tuples, J. of Logic Programming, 36,pp.271-299,
1998.

[11] Lloyd, J. W., Foundations of Logic Programming, Springer Verlag, 1987.

[12] Moon, K., Implementation of Subset Logic Languages, Ph.D. Dissertation, Department of Computer Science, SUNY-
Buffalo, February 1995.

[13] Osorio, M., Semantics of Logic Programs with Sets, Ph.D. Dissertation, Department of Computer Science, SUNY-
Buffalo, 1995.

[14] Shoenfield, J. R., Mathematical Logic, Addison Wesley, 1967.

[15] Zhou, Q., A Paradox in Hilog, Chinese J. of Computers, 19(10),pp.780-782, 1996(in Chinese).

