
Embedded Implications and Minimality in ASP

Mauricio Osorio and Magdalena Ortiz

Universidad de las Américas, CENTIA
Sta. Catarina Mártir, Cholula, Puebla

72820 México
{josorio,is103378}@mail.udlap.mx

Abstract. Disjunctive logic programs under the answer sets semantics play a very significant
role in knowledge representation and non monotonic reasoning. As the semantics has been
extended to wider classes of programs, it has been observed that implication in the body of
rules can be interesting, both for theoretical and practical issues. Here we present an extension
of the answer sets semantics to programs with embedded implications in the body of the rules.
Since the answer sets of these extended programs are not necessarily minimal, we introduce
the notion of rigid programs as a condition that assures the minimality of answer sets for
arbitrary theories. We also introduce an extended family of logic programs with restricted use of
implication in the body of the rules and address some practical knowledge representation issues
through this extension.

1 Introduction

Disjunctive logic programming under the stable model semantics, also known as Answer Sets
Programming (ASP) is an useful and expressive formalism for knowledge representation and
reasoning [1]. As the popularity of this formalism has increased, many researchers have tried
to use it for representing and solving a wide range of problems. With these developments
new challenges for the ASP community have been met and many extensions to the syntax
and semantics of disjunctive logic programs have been proposed [9,10,12].

Many research efforts in this area have focused on extending the semantics to wider
classes of programs. The use of implication in the body of rules has been recognized lately as
an extension that allows more natural problem solving, and the need of it arises both while
modeling real applications as well as for research purposes. In [12] the authors discuss that for
some knowledge representation problems, an extension to the answer set semantics is needed.
They introduce parametric connectives and present the solution to some problems using this
extension. Intuitively, the reading of parametric conjunctions corresponds to a quantified
implication, and it can be seen that many of the problems the authors present could also be
represented in an uniform and natural way with the extension we propose. The importance of
this extension is also clear in the remark done by Michael Gelfond via e-mail communication:
“The ability to use implication in the body seems to suggest the following translation: ‘r is
true if every element with property p has property q’ The natural translation is: ∀(X)(p(X)→
q(X))→ r. If no implication is allowed in the formal language the translation of this English
statement loses its universal character. It now depends on the context and is prone to error.”



In this paper we extend the answer set semantics to programs with embedded implica-
tions in the body of rules. We discuss some of the main issues related to this extension, namely
minimality and translations to simpler classes of programs. We will focus on the aspects that
we consider of particular relevance when modeling applications and solving problems using
ASP. Our main result is the introduction of rigid programs. Rigidity is a sufficient condition
to assure the minimality of the answer sets of any given theory. The relationship between
classes of programs and minimal models is studied according to the proposed rigidity condi-
tion. We also introduce an extended family of programs that allows the use of implication in
the body of the rules assuring minimality of answer sets and is at the same time useful for
modeling some interesting problems.

2 Background

2.1 Propositional Logic

The language of propositional logic has an alphabet consisting of propositional symbols:
p0, p1, . . . ; connectives: ∧,∨,←,⊥ and auxiliary symbols: (, ). Propositional symbols are also
called atoms or atomic propositions. Formulas and theories are defined as usual in logic.
The formula ¬F is introduced as an abbreviation of ⊥ ← F , and the formula F → G is just
another way of writing the formula G← F . F ≡ G is an abbreviation of (G→ F )∧(F → G).
A signature L is a finite set of propositional symbols. The signature of F , denoted as LF ,
is the set of propositional symbols that occur in F . A literal is either an atom a (a positive
literal) or the negation of an atom ¬a (a negative literal). A negated literal is the negation
sign ¬ followed by any literal, i.e. ¬a or ¬¬a.

2.2 Logic Programs

A clause is a formula of the form H ← B where H and B, arbitrary formulas in principle, are
called the head and body of the clause respectively. If H = ⊥ the clause is called a constraint
and can be written as ← B. Analogously, if B = > then the clause is called fact and can
be written just by H. A general clause is a clause where the head is a (possibly empty)
disjunction of atoms and the body a conjunction of literals. A logic program is then a finite
set of clauses. A logic program is also a theory, we will use the terms as synonyms. A set of
general clauses is a general program. Let P be a program and M a set of atoms such that
M ⊆ LP then we define M̃ = LP \M .

2.3 General Definitions

Some general concepts can be defined on any logic. Here we will use I to refer to intuitionistic
logic. For any given logic X, and for given set of atoms M and a program P we will write

2



P `X M to abbreviate P `X a for all a ∈ M and P X M to denote the fact that P is
consistent (w.r.t. logic X) and P `X M .

The set P of positive formulas is the smallest set containing all formulas without
negation connectives (¬) 1. For a given set of formulas Γ , the positive subset of Γ , denoted
as Pos(Γ ), is the set Γ ∩P.

Lemma 1. Let Γ be a subset of P ∪N2, and let A ∈ P be a positive formula. If Γ `I A
then Pos(Γ ) `I A.

Lemma 2. Let T be any theory and L a set of negative literals such that LT ∩ LL = ∅. For
any formula A such that LA ∩ LL = ∅ if T ∪ L `I A then T `I A.

2.4 Answer sets

We now define the basic background for Answer sets (or equivalently stable models). Before we
go on into the stable models semantics, we will point out that in the logic programs presented
we use two types of negation. The negation not is the usually called default negation and is
the logic programming counterpart of the logical negation ¬, which we have been using. The
other negation ∼ represents the explicit or true negation. We use it for practical purposes,
but it does not affect the semantics. Any program with this negation can be easily translated
into one without by simply renaming atoms and adding constraints.

Stable models were first defined by Gelfond and Lifschitz [3] and they are today the
most accepted semantics for disjunctive logic programs. Their logical characterization and
extensions to wider theories is due to [5,8,10,11], among others. The material here presented
is taken from [9]. It provides a characterization of answer sets and minimal models in terms
of intuitionistic logic (the result holds for any intermediate logic). The authors present the
results augmented programs. We now extend the definition to any arbitrary theory.

Definition 1 (Answer set of a program). Let P be any theory and M a set of atoms. M

is called an answer set for P iff P ∪ ¬M̃ ∪ ¬¬M I M

We will use the term minimal model as usual in logic programming [4], i. e., the set
M is a minimal model of P if M in a model of P and it is minimal (w.r.t set inclusion) among
all other models of P .

Theorem 1. Let P be any theory and M a set of atoms. M is a minimal model and an
answer set of P iff P ∪ ¬M̃ I M .

We say that two programs P1 and P2 are equivalent under the answer set semantics,
written as P1 ≡stable P2, if they have exactly the same answer sets.
1 The formula consisting of ⊥ alone is also considered a positive formula.

3



3 Embedded implications, minimality and answer sets

One of the key issues when using embedded implications is that the answer sets of this kind
of programs are no longer necessarily minimal. Minimality plays an important role in models
of logic programs. In the following section, we address it from a formal perspective. Our main
result is the definition of a simple sufficiency condition that assures minimality of answer sets.
We also analyze some classes of programs with respect to the given condition. Our result is
based on the following principle: An arbitrary theory can be reduced with respect to a set
of negative literals into a program that does not contain the given literals but still preserves
the proving power of the first one. If this new program can be translated into a positive one
without gaining proof power, then the program holds our rigidity condition, which assures
that the minimality of answer sets is preserved.

3.1 Reducing a theory

In this section, we present some reductions that can be applied to programs. We will later
use these reductions as a theoretical tool to define our main result, the rigidity condition.
The reductions here presented are similar to some known transformations, like those in [9],
but here they can be applied to any arbitrary theory.

Definition 2 (⊥ reduction). For a given theory P , we define its reduction redu⊥(P ) :=
{redu⊥f (α) : α ∈ P}. Reduction redu⊥f (α) over formulas is obtained by removing ⊥ or >
from formulas with rules like 2: replace α ∨ ⊥ or ⊥ ∨ α by α; replace α ∨ > or > ∨ α by >;
replace (((α→ ⊥)→ ⊥)→ ⊥) by α→ ⊥; etc. until no more reductions can be applied.

Definition 3 (Negative reduction). Let α be a formula and Lp a set negative literals,
then redu1f (α, Lp) is obtained replacing every occurrence of an atom a in α by ⊥ if¬a ∈ Lp.
Let P be a theory and Lp a set of negative literals. We define redu1(P,Lp) := redu⊥(P ′, Lp),
where P ′ := {redu1f (α, Lp)|α ∈ P}.

Definition 4 (Negative2 reduction [7]). Let Lp be a set of negated negative literals. The
reduction redu2f is defined over formulas recursively as follows:

1. for an atom a, redu2f (a, Lp) = a.
2. for a formula α → ⊥, redu2f (α → ⊥, Lp) is the formula obtained by replacing every

occurrence of an atom a in α→ ⊥ by > if ¬¬a ∈ Lp.
3. For a formula α#β, where # ∈ {∨,∧,→},

redu2f (α#β, Lp) = redu2f (α)#redu2f (β). We assume that if # is → then β is not ⊥.

2 In a slight abuse of notation, we will use the > symbol, which is an abbreviation of ⊥ ← ⊥, as an explicit
constant.

4



Let P be a theory, Lp a set of negated negative literals and P ′ := redu⊥{(redu2f (α, Lp)|α ∈
P} We define redu2(P,Lp) := P ′ \ {α ∈ P ′ : `I α}. Finally, redu2∗(P,Lp) is obtained by
applying redu2(P,Lp) until no more reductions can be obtained.

The following propositions refer to some properties of the programs obtained after
applying the reductions 3.

Proposition 1. Let P be a theory and Lp a set of negative literals, then redu1(P,Lp)∪Lp ≡I

P ∪ Lp and LLp ∩ Lredu1(P,Lp) = ∅.

Proposition 2. Let P be a theory and Lp a set of negated negative literals, then we have
redu2∗(P,Lp) ∪ Lp ≡I P ∪ Lp.

Remark 1. Let P be a theory and let M be a set of literals such that M ⊆ LP . Then
redu2∗(redu1(P,¬M̃),¬¬M) ⊆ P.

3.2 Rigid programs

Preserving minimality. Now that we have given a suitable background, we present our
main result: the rigidity condition. This is a property of programs which assures the minimal-
ity of answer sets of arbitrary theories. We analyze this condition with respect to some well
known classes of programs and we introduce a class of programs with embedded implications
in the body of the rules which also satisfies the rigidity condition.

Proposition 3. Let P be any theory and M ⊆ LP . If P ∪ ¬M̃ ∪ ¬¬M I M , then we have
that redu2∗(redu1(P,¬M̃),¬¬M) I M .

Proof. Let P1 := redu1(P,¬M̃) and P2 := redu2∗(redu1(P,¬M̃),¬¬M). Since P ∪ ¬M̃ ∪
¬¬M I M , and also redu1(P,Lp) ∪ Lp ≡I P ∪ Lp (Proposition 1) we have that P1 ∪ ¬M̃ ∪
¬¬M I M . Analogously by Proposition 2 we show P2 ∪ ¬M̃ ∪ ¬¬M I M . It follows by
Lemma 2 that P2 ∪ ¬¬M I M and since M is positive, Lemma 1 proves that P2 I M .

Definition 5 (Rigid theory). Let P be a theory. We say that P is rigid if for every M

such that M ⊆ LP we have that redu1(P,¬M̃) `I redu2∗(redu1(P,¬M̃),¬¬M).

3 For the full proofs refer to http://mailweb.udlap.mx/∼is103378/research/rigid

5



Theorem 2. Suppose P is a rigid theory and M ⊆ LP . Then P ∪ ¬M̃ I M iff P ∪ ¬M̃ ∪
¬¬M I M .

Proof. First suppose P ∪¬M̃ I M . Since A→ ¬¬A is an intuitionistic theorem P ∪¬M̃ I

¬¬M . Therefore P ∪ ¬M̃ ∪ ¬¬M is consistent and since intuitionistic logic is monotonic
we have P ∪ ¬M̃ ∪ ¬¬M I M . Now suppose P ∪ ¬M̃ ∪ ¬¬M I M , its immediate that
P ∪ ¬M̃ is consistent. Now, we show that P ∪ ¬M̃ `I M . Let P ′ := redu1(P,¬M̃) and
P ′′ := redu2∗(P ′,¬¬M). By Proposition 3 we know that P ′′ `I M . Since P is rigid, P ′ `I P ′′

and we get P ′ `I M . By P ∪¬M̃ ≡I P ′∪¬M̃ (Proposition 1), we getP ∪¬M̃ `I M as desired.

Proposition 4. Let P be a rigid program, then M is an answer set of P implies that M is
a minimal model of P .

Corollary 1. Let P be a rigid program. M is an answer set of P if and only if P∪¬M̃ I M .

4 Classes of Rigid Programs

In this section, we present two useful classes of logic programs that hold the rigidity condition,
hence their answer sets are always minimal. The first one is the well known class of general
programs. The second one is a family of programs that supports implications in the body of
rules in a restricted way.

4.1 General Programs

The first family of logic programs that we prove to be rigid are general programs. This is
an useful result, since general programs are the most widely used disjunctive programs, and
most software implementations that compute stable models support them.

Proposition 5. Every general program is rigid. 4

Corollary 2. Let P be a general program, then M is a answer set of P implies that M is a
minimal model of P .

4.2 Implication-Embedded Disjunctive Logic Programs

We now present a class of programs that extends general ones allowing the use of implications
in the body of the rules. Despite its syntactical restrictions, the class is suitable for solving
some knowledge representation problems. We will also analyze the rigidity condition of this
kind of programs.
4 The proof is based on the fact that applying redu2 to the redu1 of the program will only remove clauses.

6



Definition 6 (Positive embedded program). A positive embedded conjunct is either a
literal or a formula of the form (a → b), where a and b are atoms. A positive embedded
clause is a clause of the form H ← B, where H is an atom and B is a conjunction of positive
embedded conjuncts. P is a positive embedded program if for every clause α ∈ P , α is either
a general clause or a positive embedded clause.

Proposition 6. All positive embedded programs are rigid. 5

Corollary 3. Let P be a positive embedded program, then M is a answer set of P implies
that M is a minimal model of P .

The last part of this section presents some results about positive embedded programs
that we will use to define a translation into a simpler class that does not have embedded
implications. We will come back to this results in the next section, when we discuss some
practical examples.

Lemma 3. Let P be a positive program and let HP be the set of atoms that occur in the
heads of the rules of P . If P G3 a then a ∈ HP .

Proposition 7. Let P be a logic program and let HP be the set of atoms that occur in the
heads of the rules of P . If a /∈ HP , then P ≡stable P ∪ {¬a}

Definition 7. Given a set of literals L and a positive embedded rule r, rL is obtained from
r by replacing all conjuncts of the form (a→ b) by b if a ∈ L, by > if ¬a ∈ L and doing no
replacements otherwise. For any positive embedded program P , PL is the program obtained
by replacing every conjunctive rule r ∈ P by rL.

Remark 2. For any positive embedded program P and a set of literals L such that P I L,
then `I PL ≡ P .

Proposition 8. Let P be a positive embedded program. Let F be the set of facts in P and
Lit(H) the literals occurring in the heads of the rules in P . Let F ′ ⊆ F and ¬H̃ ′ ⊆ ¬(LP \
Lit(H)). Then P ≡stable PF∪¬H̃′

5 Embedded Implications in Knowledge Representation

As we have mentioned before, the need of embedded implications in the body of rules has
been discovered as a relevant issue for knowledge representation in ASP. In this section, we
present examples in which the definition of a problem leads us to this conclusion. If we allow
implications in the body of rules, the problem can be modeled in a natural and intuitive way.
The examples also show from a practical point of view how extending to the syntax can have
a strong effect on the semantics of the program.
5 Once again, applying the redu2 transformation to P ′ will only remove clauses.

7



Learner modeling for collaborative learning environments. In [6], ASP is used for
learner modeling in collaborative learning environments. In this context, some statements
similar to the following one have to be expressed in a disjunctive program: A learner is (nor-
mally) capable of applying a knowledge element, if he is capable of applying all the knowledge
elements which are a specialization of it. We would expect a natural and intuitive translation
of these statements into logic, to look like this:

capable(Ke)← hasSpecialization(Ke),
∀Ke1[specialization(Ke, Ke1)→ capable(Ke1)],
not ∼capable(Ke).

(1)

but this is certainly not a disjunctive logic programming rule. We would like to write this
rule in such a way that it expresses naturally the idea we want to express and has a suitable
behavior.

5.1 Semantics and Expected behavior

Now we will discuss in detail the semantics and behavior of programs modeled using embedded
implications in the body of rules. Let’s take, for instance, the example mentioned above. We
presented one rule of the example that has implication in the body. Now we will add another
rule that is also a part of the original program and give some sample facts (EDB) in order
to make the example clear. Our program P would then look as follows:

knowElem(k1). specialization(k1, k2). capable(k2).
knowElem(k2). specialization(k1, k3). capable(k3).
knowElem(k3). specialization(k1, k4). capable(k4).
knowElem(k4). specialization(k5, k6).
knowElem(k5).
knowElem(k6).

capable(Ke1)← specialization(Ke, Ke1),
capable(Ke),
not ∼capable(Ke1).

capable(Ke)← hasSpecialization(Ke), (1)
∀Ke1[specialization(Ke, Ke1)→ capable(Ke1)],
not ∼capable(Ke).

hasSpecialization(K)← knowElem(K), specialization(K, K1).

How can we implement rule 1 in a disjunctive logic program? In some cases the need of
implications in the body of rules has been addressed by translating the implication in the
“classical” manner. This solution follows the tradition of Lloyd [4] and classical Logic Pro-
gramming. One would be tempted to use it, since it seems natural and simple. Actually it
has worked many times, but in certain cases the behavior of the new program is not intuitive,
bringing us to some unexpected models. If we translate rule 1 this way, we would then replace
it in P by :

capable(Ke)← hasSpecialization(Ke),
not notHoldsForAll(Ke),not ∼capable(Ke).

notHoldsForAll(Ke)← specialization(Ke, Ke1),
not capable(Ke1).

8



The program obtained from this translation has two answer sets. One is the expected model: {
capable(k2), capable(k3), capable(k4), capable(k1) }, but the other one includes capable(k5),
capable(k6) as well, which have apparently no reason to be computed. This problem has been
pointed out in other cases. For example, in the context of diagnostic reasoning in [2] a similar
rule is found and the authors point out that this kind of translations does not always work.

KR with Positive Embedded Programs. Another alternative to represent our example
is using class of programs we proposed in section 4.2. Here we use the universal quantifier as
an abbreviation of a conjunction of elements. On the ground program, the expression ∀x[p(x)]
becomes a simple conjunction p(a1) , p(a1) . . . p(an) of all the ground instances of predicate
p. After grounding, rule 1 is translated into a set of rules like the following ones. There is one
of instance of these rules for every possible ground instance of the given predicates. In this
case, there would be six rules, which correspond to all ki such that knowElem(ki). We give
only the first one as an example.

capable(k1)← hasSpecialization(k1),
specialization(k1, k1)→ capable(k1),
specialization(k1, k2)→ capable(k2),
specialization(k1, k3)→ capable(k3),
specialization(k1, k4)→ capable(k4),
specialization(k1, k5)→ capable(k5),
specialization(k1, k6)→ capable(k6),
not capable(k1).

We define F to be the set of facts in P and LH := Lit(H) as the set of literals that
appear in the heads of the rules of P . Moreover, we can define Fspec ⊂ F to be the subset of
F that contains all the instances of specialization, and L̃Hspec ⊂ L̃H contains all instances
of specialization that are not in LH . Now we have the following sets:

Fspec = { specialization(k1, k2), . . . , specialization(k5, k6)}
¬L̃Hspec = { ¬specialization(k1, k1), . . .¬specialization(k6, k6)}

We define a new program P ′ := P ∪ ¬L̃Hspec. By Proposition 7 we know that the
stable models of P are preserved in P ′. Let L := Fspec ∪ ¬L̃Hspec . It is easy to see that
every ground instance of specialization is in L, and that P ′ I L. so we can apply the P ′L

reduction to obtain a general program that has exactly the answer sets of P . We give as an
example the first two rules after applying the reduction:

capable(k1)← hasSpecialization(k1), capable(k2), capable(k3),
capable(k4), not capable(k1).

capable(k2)← hasSpecialization(k2), not capable(k2).

The only answer set of the general program we obtain corresponds to the one we expected: {
capable(k2), capable(k3), capable(k4), capable(k1) }. Remember that since positive embedded
programs are rigid, we can assure that even when the extensional database is changed, the
answer sets are always going to be minimal models as well. From a practical perspective, this
simple translation allows us to model problems with implication in the body of rules and
implement them with the standard software.

9



6 Conclusions and Related Work

Extending the ASP semantics to wider classes of formulas allows us to represent problems
in a more natural way. The knowledge representation community is always on the search of
ways to represent problems and explicit knowledge with increasing naturality. As we have
mentioned, some real life statements lose their natural behavior if no implications in the body
are allowed. We believe that extending the semantics of ASP to programs with embedded
implications in the body of the rules can be an effective contribution in this direction. Our
motivation and examples are in real life applications, in areas where we could actually use
logic programming as a reasoning component of intelligent systems.

To the best of our knowledge, an answer sets semantics for programs with embedded
implications had not been defined. The characterization we have used [9] is valid for arbitrary
theories, but it is presented in the context of augmented programs. We have noticed, however,
that some of the examples that we have modeled with this extended syntax could also be
represented using parametric connectives due to Perri and Leone [12]. We can point out
that the semantics here defined do not have the stratification restriction they present. The
relations between both approaches is subject of deeper study, but it seems that in some cases
both semantics coincide.

References

1. Chitta Baral. Knowledge Representation, reasoning and declarative problem solving with Answer Sets.
Cambridge University Press, Cambridge, 2003.

2. Michael Gelfond and Marcelo Balduccini. Diagnostic reasoning with a-prolog. TPLP, 3(4-5):425–461,
2003.

3. Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic programming. In R. Kowalski
and K. Bowen, editors, 5th Conference on Logic Programming, pages 1070–1080. MIT Press, 1988.

4. John W. Lloyd. Foundations of Logic Programming. Springer, Berlin, second edition, 1987.
5. Juan Antonio Navarro. Answer set programming through G3 logic. In Malvina Nissim, editor, Seventh

ESSLLI Student Session, European Summer School in Logic, Language and Information, Trento, Italy,
August 2002.

6. Magdalena Ortiz de la Fuente. An application of answer sets programming for supporting collaboration in
agent-based cscl enviroments. In Balder Ten Cate, editor, ESSLLI03 Student Session. European summer
School of Logic, Language and Information, Vienna, Austria, August 2003.

7. Mauricio Osorio, Juan Antonio Navarro, and José Arrazola. Equivalence in answer set programming. In
A. Pettorossi, editor, Logic Based Program Synthesis and Transformation. 11th International Workshop,
LOPSTR 2001, number 2372 in LNCS, pages 57–75, Paphos, Cyprus, November 2001. Springer.

8. Mauricio Osorio, Juan Antonio Navarro, and José Arrazola. A logical approach for A-Prolog. In Ruy
de Queiroz, Luiz Carlos Pereira, and Edward Hermann Haeusler, editors, 9th Workshop on Logic, Lan-
guage, Information and Computation (WoLLIC), volume 67 of Electronic Notes in Theoretical Computer
Science, pages 265–275, Rio de Janeiro, Brazil, 2002. Elsevier Science Publishers.

9. Mauricio Osorio, Juan Antonio Navarro, and José Arrazola. Applications of intuitionistic logic in answer
set programming. Accepted to appear at the TPLP journal, 2003.

10. David Pearce. From here to there: Stable negation in logic programming. In D. M. Gabbay and H. Wansing,
editors, What Is Negation?, pages 161–181. Kluwer Academic Publishers, Netherlands, 1999.

11. David Pearce. Stable inference as intuitionistic validity. Logic Programming, 38:79–91, 1999.
12. Simona Perri and Nicola Leone. Parametric connectives in disjunctive logic programming. In ASP03

Answer Set Programming: Advances in Theory and Implementation, Messina, Sicily, September 2003.

10


