
Extending Defeasible Prolog: ‘Even-if’,
Preemption, and Defeasible Reasoning

Ahti-Veikko Pietarinen?

Department of Philosophy, P.O. Box 9, FIN-00014 University of Helsinki
pietarin@cc.helsinki.fi

Abstract. Defeasible Prolog (d-Prolog) is a Prolog metainterpreter de-
signed by Donald Nute to implement nonmonotonic inference based on a
system of defeasible logic. Defeasible logic promotes enthymemic reason-
ing on incomplete set of premisses, retracted on the presence of contrary
information. In this paper, it is shown how to give proof conditions for
the ‘even-if’ conditions of defeasible logic. This is done by allowing the
pre-emption of defeaters, in other words preventing some rules of rebut-
ting other, specific rules. These proof conditions are then implemented
to d-Prolog. Some computational results are presented for the given ex-
amples. The nature and goals of defeasible reasoning is also assessed.

1 Introduction

In Donald Nute’s system of defeasible reasoning [7–9], the goal is to give a for-
malised account of nonmonotonic defeasible inferences like “typically, ϕ’s are
ψ”, “normally, ϕ’s are ψ”, “usually, ϕ’s are ψ”, or perhaps “reasonable grounds
for holding ϕ warrant reasonable ground for holding ψ”. These inferences hold
only if a defeasible theory does not contain additional rules that represent con-
trary information. Such contrary information may lead to the conclusion that
the state of affairs exemplified by the previous set of defeasible rules no longer
holds. In the presence of such rules, previous inferences may become defeated,
and so defeasible reasoning exhibits nonmonotonicity: a set of conclusions does
not always grow monotonically when new premises are added.

Defeasible Prolog (d-Prolog) is a Prolog metainterpreter, designed by Donald
Nute [10] to implement some basic forms of nonmonotonic defeasible inference.
It has two rules to represent defeasibility, defeasible implications and defeaters.
In order to represent defeasible implication (ψ := Φ, read “typically, Φ’s are ψ”)
as well as the defeater (ψ :^ Φ, read “if Φ, it can be taken as a reason to doubt
that not ψ” or “if Φ, it might be that ψ”), new two-place operators “:=” and
“:^” are added to the usual syntax of Prolog. Ordinary Prolog implication “:-”
has, however, its usual meaning.

Although it is not clear what the intuitive difference between two rules is,
their uses in the proof derivations are formalised slightly differently. A defeater

? Supported by the Academy of Finland (Grant No: 103130).



does not give evidence to support some conclusion, since its intended purpose is
just to interfere with the derivations from the defeasible rules.

In d-Prolog, rule heads are literals (atomic sentences or their negations),
and bodies are conjunctions of atomic sentences. Unlike ordinary Prolog with
negation-as-failure, literals, and hence also the heads of the rules may be explic-
itly negated with a one-place predicate “neg”. The approach Nute advocates in
d-Prolog is entirely proof theoretic.

A defeasible theory T is a tuple 〈K,R〉, where K is a finite set of literals
and R is a finite set of rules. A proof of a literal ψ is defined as a proof tree
t, where ψ is a root node of t and t is a finite labelled tree such that for every
node n of t there is a theory T and some literal which is flagged positive (ϕ+) or
negative (ϕ−). When the node contains ϕ+, we know that the literal is defeasibly
derivable from T with respect to the set of proof conditions Σ (T `Σ ψ); on
the other hand, if the node has the label ψ−, it indicates that the literal is
demonstrably not derivable from the theory T by the conditions in Σ (T 6`Σ ψ).

Defeasible logic is defined as a set of conditions Σ on every node of the tree t
for which it is never the case that T `Σ ψ and T 6`Σ ψ. To solve the problem of
which defeasible rules should be used to defeat other defeasible rules, an explicit
partial order (superiority relation) is defined between defeasible rules. If a rule
r1 is superior to a rule r2 (r1 = r2), it may be used to defeat the inferior rule r2.

In some cases, it is also possible to extract information about the partial order
by using the method of more specific antecedent [7]. By defining superiority
by antecedent specificity, the antecedent conditions of one rule are derivable
from the antecedent conditions of another rule. However, an extra complication
ensues, for some parts of the derivations in a proof tree may be based on just
the subtheory of T . Therefore, some labellings may vary on their admissible set
of literals and rules upon which the proofs of literals in rules defined by more
specific antecedents depend.

Different rules interact with each other in the following ways. The rule ψ := Φ
is defeated by the rule η := X or η :- X, if the head η is either a negation of ψ
or some literal which is explicitly stated as incompatible with ψ. Such a literal η
is contrary to ψ. Next, the rule ψ := Φ is undercut by the defeater η :^ X, if η
is contrary to ψ and ψ := Φ is not superior to η :^ X. A defeasible rule ψ := Φ
or a defeater ψ :^ Φ may also be pre-empted, whenever there exists a literal η
contrary to ψ which is derivable from the theory, or there is an ordinary Prolog
rule η :- X with a contrary head, or for the defeasible rule ψ := Φ there is a
rule η := X, whose head η is contrary to ψ and which is superior to it, that is,
if (η := X) = (ψ := Φ).

Moreover, the literals contained in the bodies X in any of the former rules
must always be defeasibly derivable from the defeasible theory T . Preemption
relaxes the assumption that applicable defeasible rules to defeat competing con-
trary rules must always be superior to every other competing rule. When pre-
emption is enabled, once the defeasible rule is defeated it loses its capacity to
defeat any other rule. Unfortunately, pre-emption is computationally costly.



Starting with the d-Prolog of [10], in the present paper we extend d-Prolog
with the so called even-if rules and even-if proof conditions specified to those
rules. Even-if rules and even-if conditions without pre-emption were given in [8],
but they have not been implemented in d-Prolog. Our task is, therefore, first
to formulate these conditions at the theoretical level such that they also enable
pre-emption, and then show how they may be implemented in d-Prolog. Finally,
some general points concerning defeasible reasoning and its implementation are
discussed, including the possibility of stratifying d-Prolog programs.

2 Rules for the Even-If Conditions

In addition to the basic method of defeasible reasoning, Nute has introduced
even-if rules and conditions in his system of defeasible logic [8]. The aim of these
rules is to extend basic defeasible reasoning that allows new kinds of inference.
Formally, an even-if rule is a rule ψ := Ξ | Φ, and is read “if Φ, then (typically) ψ
even if Ξ holds”. Let us call the condition Φ the main condition and the condition
Ξ the even-if condition. These rules are always defeasible, that is, they do not
apply to the ordinary Prolog rules. Moreover, they permit the superiority relation
to be defined by the method of finding a more specific antecedent. Conditions
for the proper use of these rules have not, however, been given in a form that
enables the pre-emption of defeaters.

To illustrate the use and applicability of even-if rules, consider following two
examples.

Example 1. A beneficiary is suspect:

suspect(X) := beneficiary(X).

With an alibi a person usually is not, however, suspect even if he is a beneficiary:

neg suspect(X) := alibi(X) | beneficiary(X).

Tom has an alibi: alibi(tom). Clearly he must not be a suspect. In both cases
it can, indeed, be concluded tentatively that neg suspect(tom) is a derivation
from the theory T .

Example 2. Let us add to the previous theory the defeater, according to which
a person with an alibi who has not provided reliable documents (or has forged
them) may very well be suspect:

(suspect(X) :^ (alibi(X), neg reliable documents(X)).

If Tom has not provided reliable documents

neg reliable documents(tom),

it is difficult to conclude, with this amount of information, whether Tom is
suspect or not. Perhaps the best one may hope is to draw no conclusion. In
the extension of d-Prolog, a fragment of which is given in Appendix, both neg
suspect(tom) and suspect(tom) are demonstrably not derivable from the T ,
since the rule



suspect(X) :^ (alibi(X), neg reliable documents(X))

is not an acceptable rule to pre-empt an inferior rule

neg suspect(X) := alibi(X) | beneficiary(X).

This is because pre-emption is only possible if the rule is defeated with a superior
rule.

Conditions that are responsible for the correct even-if derivations emerge from
suitable modifications to the conditions in [8] in the following respects. First,
a substitution is removed for simplicity.1 Second, the notation will be changed
and made uniform, since we deal with d-Prolog syntax. Third, the pre-emption
of defeaters is taken into account by adding some extra constraints.

Let n be an arbitrary node of the proof tree t, K the set of literals, R the set
of rules, and let the @ψ denote the case when ψ is a tentative conclusion derived
from the theory T = 〈K,T 〉. The following conditions P+ and P− are defined
for all the nodes n, the former for the literals that are defeasibly derivable and
the latter for the literals that are demonstrably not derivable. We also require
the main conditions to be nonempty.

P+: The node n is labelled 〈K,R,@ψ+〉, if either n has a child labelled
〈K,R, neg ψ−〉 or there exists a rule ψ := Ξ | Φ ∈ R such that all of
the following (1), (2) and (3) hold:
(1) for every ϕ ∈ Φ a node n has a child labelled 〈K,R,@ϕ+〉

(= every literal in the main body is derivable)
(2) for every neg ψ := H ∈ R there exists η ∈ H and a child of n labelled
〈K,R,@η−〉
(= every contrary rule must have a nonderivable literal in the body)

(3) for every neg ψ := ∆ | Θ ∈ R or neg ψ :^ Θ ∈ R either (a) or (b) holds:
(a) there exists θ ∈ Θ and a child of n labelled 〈K,R,@θ−〉

(= every contrary rule must have a nonderivable literal in the main
body)

(b) all of the following (i), (ii) and (iii) hold:
(i) there exists ϕ ∈ Φ ∪Ξ and a child of n labelled 〈Θ,R,@ϕ−〉

(= specificity: some literal in the antecedent conditions of the
main rule is not derivable from the antecedent conditions of the
contrary rules)

(ii) for every θ ∈ Θ there exists a child of n labelled 〈(Φ∪Ξ), R,@θϕ+〉
(= specificity: every literal in the main condition of the contrary
rule is derivable from the antecedent conditions of the main rule)

(iii) for every ϕ ∈ Φ∪Ξ there exists a child of n labelled 〈K,R,@ϕ+〉
(= preemption: every literal in the body of the main rule is de-
feasibly derivable).

P−: The node n is labelled 〈K,R,@ψ−〉, if either n has a child labelled
〈K,R,@ψ+〉 or both (1) and (2) hold:

1 Substitution refers to quantified defeasible logic that has been sketched in [8].



(1) for every ψ := Φ ∈ R, either (a) or (b) holds:
(a) there exists ϕ ∈ Φ and a child of n labelled 〈K,R,@ϕ−〉

(= a literal in the body is demonstrably not derivable)
(b) there exists ψ := H ∈ R such that for every η ∈ H a node n has a

child labelled 〈K,R,@η+〉
(= some other rule with the same head has a derivable body)

(2) for every ψ := Ξ | Φ ∈ R, either (a), (b) or (c) holds:
(a) there exists ϕ ∈ Φ and a child of n labelled 〈K,R,@ϕ−〉

(= a literal in the head is demonstrably not derivable)
(b) there exists neg ψ := X ∈ R such that for every χ ∈ X a node n has

a child labelled 〈K,R,@χ+〉
(= some contrary rule has a derivable body)

(c) there exists neg ψ := ∆ | Θ ∈ R or neg ψ :^ Θ ∈ R such that for
every θ ∈ Θ a node n has a child labelled 〈K,R,@θ+〉, and either
(i), (ii) or (iii) holds:
(i) there exists θ ∈ Θ and a child of n labelled 〈(Φ ∪Ξ), R,@θ+〉

(= specificity: some literal in the main body of the rule is deriv-
able from the body of the original rule)

(ii) for every ϕ ∈ Φ ∪Ξ a node n has a child labelled 〈Ξ,R,@ϕ+〉
(= specificity: every literal in the body of the original rule is
derivable from the main body of the contrary rule)

(iii) there exists ϕ ∈ Ψ ∪Ξ and a child of n labelled 〈K,R,@θ−〉.
(= pre-emption: some literal in the body of the original rule is
demonstrably not derivable).

Let M be a monotonic core of a defeasible logic consisting of the four basic con-
ditions, and SS+ is a semi-strictness condition [7]. In terms of the semistrictness
condition, an ordinary rule ψ :- Φ may defeat another ordinary rule neg ψ :- Ψ
if the antecedent Ψ is only defeasibly derivable.

On the depth of the proof tree t it can now be shown that there is no theory
T and a literal ψ such that T `P ψ and T 6`P ψ. This establishes that P =
M ∪ {SS+, P+, P−} is a defeasible logic.

3 Extending d-Prolog

In order to incorporate previous conditions into d-Prolog, we add to its syntax
a new two-place relation “|”. Its aim is to distinguish between the primary
condition Φ in the rule ψ := Ξ | Φ and the secondary even-if condition Ξ, as in
conditions P+ and P−.2 We need to consider the following three modifications
and additions to the defeating and undercutting conditions of [10].

1. The rule ψ := Ξ or ψ :- Ξ is defeated (as implemented in the predicate
defeated/2), if there exists an even-if rule ϕ := Ξ | Φ the head ϕ of which
is contrary to ψ, the body Φ of which (without the even-if condition Ξ) is
defeasible derivable, and the even-if condition Ξ of which is a body of such
a rule r that is not superior to the rule ϕ := Ξ | Φ.

2 Note that in the appendix, the symbol ‘|’ is replaced with the symbol ‘#’.



2. The rule ψ := Ξ | Φ is defeated
– if there exists a rule ϕ := Θ the head ϕ of which is contrary to ψ, Θ is

defeasibly derivable, and the condition Ξ is not the head of any defeasible
rule that is not superior to the rule ϕ := Θ, or

– if there exists a rule ϕ := Φ | Θ, the head ϕ of which is contrary to ψ,
Θ is defeasibly derivable, and the even-if condition Φ is the head of a
defeasible rule r that is not superior to the rule ϕ := Φ | Θ.

3. The rule ψ := Ξ | Θ is undercut (undercut/2), if there exists a defeater
ϕ :^ Θ, the head of which is contrary to ψ, Θ is defeasibly derivable, and
ψ := Ξ | Θ is not superior to it.

The preemption of defeaters (preempted/2) is similar to the defeating con-
ditions (Appendix A).

There are also two new definitions for the defeasible derivability (def der/2),
three definitions for defining superiority relation with the defeasible specificity
(sup rule/2) and some other definitions for syntax and occurrences of the even-
if rules. Some of these predicates are described in the appendix. We omit further
details here.

4 Computational Considerations

To get a glimpse of the performance of defeasible inferences in d-Prolog, several
runs have been performed as regards typical benchmark problems of nonmono-
tonic reasoning. The results for the examples 1 and 2 in the extended d-Prolog are
summarised in Table 1. Note how enabling the preemption of defeaters increases
the sizes of proof trees. In general, the sizes are enormous, and so defeasible
reasoning of this kind is far from tractable.

pre- Example 1 Example 2

empt @ suspect(tom) @ neg suspect(tom) @ suspect(tom) @ neg suspect(tom)

+ 23 90 23 138

– 53 98 53 270

Table 1. Some sizes of proof trees for the queries ‘@ suspect(tom)’ and ‘@ neg

suspect(tom)’ for the predicates presented in examples 1 and 2.

As the first approximation, there are some straightforward strategies to limit
the complexity of defeasible reasoning. For example, the sizes of the proof trees
can be restricted to simplify inferences in the following two ways:

– Restrict the depth of the proof tree by generating paths only up to the certain
fixed limit. After reaching the limit, the proof backtracks to the earlier nodes.

– Restrict the branching factor of the proof tree by keeping the size of the
rule set R small and also the maximum number of conjunctions in every rule
reasonably small.



The former method, however, has a notorious side effect: since the nature of
the ‘argumentative’ defeasible inference is depth-first search (some labels may
depend on the other distant labels), constraining it may cause the horizon ef-
fect. Moreover, limiting maximal depth amounts to the cheap method of loop
checking.

The latter method is hence more appropriate, since it reflects the nature
of defeasible reasoning better. In argumentation, only the most pertinent and
plausible arguments should be used to support arguments. In conversational
situations, it is often necessary, or at least pragmatic, to lay size restrictions
to the allowable set of one’s assertions. Usually only one or two defeaters, or
objections, ought to be enough to render opposite views unwarranted.

Further emendations are possible. In defeasible logic, derivation of incom-
patible clauses and prevention of cycles lies in the hands of the programmer.
Defeasible logic cannot detect them. However, whenever there is a fear of cyclic
dependency graphs, a possibility is to stratificate the predicates so that they do
not depend on each other in a circular manner. By stratified sets of rules it is
possible to solve precisely which rules one should use to derive a conclusion. The
idea of stratification is that, prior to referring to a negation of a fact, the fact
itself needs to be defined. (This idea has immediate cognitive plausibility: to be
able to think of a negated concept the concept itself has to be accessible to the
thought, albeit with certain neural inhibition.) In terms of logic programming,
a stratified program has a partition of its clauses into hierarchical sets in which
negative goals of clauses are defined in lower-level predicates.

What if some programs cannot be stratified? The proposed solution in the
well-founded semantics is that some facts receive the third truth-value of ‘un-
defined’. In the stable model semantics the logic remains bivalent, and non-
stratified programs may have several models or none. Typically, however, strat-
ification amounts to programs that have a model and do not contain mutually
dependent predicates.

Furthermore, it is possible to consider different grades of stratification in the
sense that only certain kinds of rules, such as defeasibe rules, strict rules or
defeaters, are subject to stratification, amounting to semistratified programs.

To have stratification is an obvious future step that needs to be done to
improve the performance of d-Prolog. Before that, however, a feasible semantics
has to be defined for defeasible logic and a fortiori for d-Prolog. This is not our
concern in this paper, but [6, 12] have provided steps to that direction.

5 Conclusions and Related Work

In this paper, it was shown how to give proof conditions for defeasible ‘even-if’
rules, by allowing preemption, namely preventing some rules of rebutting other,
specific rules. These proof conditions were implemented in d-Prolog.

Some comments that put defeasible logic into a wider perspective are in
order.



The aim of defeasible logic is to model aspects of human reasoning in which
classical, monotonic logic falters. However, without proper semantics it is in the
end unclear how far such goals will reach. But rules of the above systems are
constitutive. That the system produces correct results for some sample of cases
do not tell what these rules mean. For instance, proof theory does not tell what
the intended meaning of defeasible implication is, in other words what it is for
it to be satisfied in a given interpretation.

In the present paper, the sole reason for formulating further rules of defeasible
inference in the spirit of proof theory is that they are easier to implement.
However, the defeasible systems are no longer effective. What is the purpose of
these rules?

In nonmonotonic systems, there is a trade-off between maximising the set of
correct conclusions and minimising the set of incorrect ones. It is not plausible
to think that the latter set will be empty. In this sense, the rules are no longer
entirely constitutive, and there is a strategic element in them.

Furthermore, one may think that for any set of compatible examples of de-
feasible inference, there exists a defeasible logic that produces correct results
for any single set of examples. This may be done by tweaking the constitutive
component of rules indefinitely. Even so, the problem of the meaning of the rules
remains unanswered. For instance, it is not clear, due to the lack of model the-
ory, what the motivations are to separate defeasible rules and the defeaters from
each other. They are ambiguous, subordinate to the kind of meaning holism that
subdues their differences.

Models of defeasible logic should depict situation, states, or classes of ob-
jects that are in some plausible sense typical, ceteris paribus, and insensitive to
vagueness of natural language predicates, in the sense of not giving rise to any
‘fuzzy’ system of graded truth values. Prototype theory [5, 15] aims at clarify-
ing the contribution that new information brings to pre-existing structures of
knowledge (schemas, frames, scripts etc.) by relaxing the strict category mem-
bership or the class-inclusion relation. Prototype theory thus appears to provide
a promising candidate for the further development of a defeasible model theory.

Until a proper model theory is at hand, defeasible logic will remain en-
thymemic. In other words, it is an argumentative rather than a logical system,
in which reasoning proceeds in terms of incomplete sets of premisses. Essentially,
then, it functions by way of common knowledge that the agent, engineerer or
modeller brings in. It thus appeals to the rhetoric ideas associated with pro-
gramming (such as ethos and pathos) rather than strictly logical semantics.

A recent proposal for the workable semantics of defeasible logic is found in
[6]. In that semantics, models are taken to be ‘states of minds’ that differentiate
between necessary (definite) reasoning in terms of knowing a proposition and
defeasible reasoning in terms of believing a proposition. It reflects the well-
founded semantics in that there may be propositions that are neither known,
believed, not known nor not believed. What this agnostic interpretation produces
is an innovative epistemic approach to defeasible logic, replacing an objective
concept of a model with a cognitive one. This is fine as far as it goes, but



regrettably, it does not answer, among other things, the central question of the
intended difference in meaning between defeasible implication and the defeater.
The credulous fixed-point semantics (exemplifying, so to speak, rhetoric pathos)
considered in [12] does not tell the difference, either.

Another line of development intergrated defeasible rules of logic program-
ming with argumentative structures and defeasibility among arguments [4] in
legal, economic and decision-making systems [14], both of which derive their
inspiration from much of the same source of defeasibility in semantic networks
[13].

Whilst d-Prolog underwent a protracted improvement over a period of many
years, other paradigms entered the scene. Answer-set programming is a dominant
paradigm to perform nonmonotonic reasoning [1, 2], including defeasible rules.
More work needs to be done in that direction.

As noted, proper logical semantics still awaits to be defined for a sufficiently
comprehensive (stratified) d-Prolog. Likewise, the deontic versions of defeasibil-
ity [11] are likely to benefit from similar revisions.

References

1. Brewka, G., and Eiter, T., 1999. Preferred answer sets for extended logic programs.
Artificial Intelligence 109, 297–356.

2. Brewka, G., and Eiter, T., 2000. Prioritizing default logic. In Hölldobler, S. (ed.),
Intellectics and Computational Logic. Kluwer, Dordrecht, 27–45.

3. Gabbay, D., Hogger, C.J., and Robinson, J.A., eds, Handbook of Logic in Artifi-
cial Intelligence and Logic Programming: Nonmonotonic Reasoning and Uncertain
Reasoning. Clarendon Press, Oxford, 1994.

4. Garćıa, A.J., and Simari, G.R., 2004. Defeasible logic programming: an argumen-
tative approach. Theory and Practice of Logic Programming 4, 95–138.

5. Lakoff, G., 1987. Women, Fire, and Dangerous Things: What Categories Reveal
about the Mind. Chicago University Press, Chicago.

6. Maher, M., 2002. A model-theoretic semantics ofr defeasible logic. In Decker, H.,
et al., eds., Proc. PCL 2002.

7. Nute, D., 1992. Basic defeasible logic. In Fariñas del Cerro, L., and Penttonen, M.,
eds, Intensional Logics for Logic Programming. Oxford University Press, Oxford,
125–154.

8. Nute, D., 1994a. A decidable quantified defeasible logic. In Prawitz, D., Skyrms, B.
and Westerst̊ahl, D., eds., Logic, Methodology and Philosophy of Science 9, Elsevier
Science, Holland, 263–284.

9. Nute, D., 1994b. Defeasible logic. In [3, 353–394].
10. Nute, D., 1997a. Defeasible Prolog. In Convington, M., Nute, D., and Vellino, A.,

Prolog Programming in Depth, 2nd ed., Englewood Cliffs, NJ: Prentice Hall.
11. Nute, D., ed., 1997b. Deontic Defeasible Logic. Dordrecht: Kluwer.
12. Nute, D., 2001. Defeasible logic, manuscript.
13. Pollock, J., 1987. Defeasible reasoning. COgnitive Science 11, 481–518.
14. Prakken, H., and Wreeswijk, G., 2002. Logical systems for defeasible argumenta-

tion. In Gabbay, D., and Guenthner, F., ed., Handbook of Philosophical Logic , 2nd
ed., Kluwer, Dordrecht, 219–318.

15. Rosch, E., 1973. Natural categories. Cognitive Psychology 4, 328–350.



A Clauses to Extend d-Prolog

init :- op(1100,fx,@), % defeasible conclusion

op(900,fx,neg), % negation

op(1100,xfy,:=), % defeasible implication

op(1100,xfy,:^), % defeater

op(1100,xfy,#). % even-if

:- dynamic((neg)/1, (:=)/2, (:^)/2, (#)/2).

:- multifile((neg)/1, (:=)/2, (:^)/2, (#)/2).

def_der(KB,Goal) :-

preemption,

def_rule(KB,(Goal := (ConditionX # Condition))),

\+ (contrary(Goal,Contrary1),

strict_der(KB,Contrary1)), def_der(KB,Condition),

\+ (contrary(Goal,Contrary2),

clause(Contrary2,Condition2),

Condition2 \== true,

def_der(KB,Condition2)),

\+ (contrary(Goal,Contrary3),

def_rule(KB,(Contrary3 := (Condition4 # Condition3))),

def_der(KB,Condition3),

\+ (preempted(KB,(Contrary3 := (Condition4 # Condition3))))),

\+ (contrary(Goal,Contrary5),

def_rule(KB,(Contrary5 := Condition5)),

def_der(KB,Condition5),

\+ (preempted(KB,(Contrary5 := Condition5)))),

\+ (contrary(Goal,Contrary6), (Contrary6 :^ Condition6),

def_der(KB,Condition6),

\+ (preempted(KB,(Contrary6 :^ Condition6)))).

defeated(KB,(Head := (Body1 # Body))) :-

contrary(Head,Contrary),

def_rule(KB,(Contrary := (Condition2 # Condition))),

def_der(KB,Condition),

\+ sup_rule((Head := (Body1 # Body)),

(Contrary := (Condition2 # Condition))),!.

undercut(KB,(Head := (Body1 # Body))) :-

contrary(Head,Contrary),

(Contrary :^ Condition), def_der(KB,Condition),

\+ sup_rule((Head := (Body1 # Body)),(Contrary :^ Body)),!.

preempted(KB,(Head := (Body1 # Body))) :-

contrary(Head,Contrary),

def_rule(KB,(Contrary := (Condition2 # Condition))),

def_der(KB,Condition),

sup_rule((Contrary := (Condition2 # Condition)),

(Head := (Body1 # Body))),!.


