An Evaluation of a Rule-Based Language for Classification Queries

Dennis P. Groth

Indiana University School of Informatics
Bloomington, IN 47408, USA.
Email: dgroth@indiana.edu

Abstract

This paper provides results from a usability experiment comparing two different database query languages.
The research focuses on a specific type of query task, namely classification queries. Classification is the
process of assigning input data to discrete classes according to application specific criteria. While SQL can
be used to perform classification tasks, we seek to discover whether a different type of query language offers
any advantages over SQL. We present a rule-based language, which organizes the queries in a logical way. The
rule based language is specifically designed to support classification tasks. The usability experiment measures
the effectiveness, efficiency and satisfaction of novice and expert users performing a variety of classification
tasks. The results show that while both approaches are usable for classification tasks, the rule-based approach
was preferred by expert users.

1 Introduction

Classification is the process of assigning input data to discrete classes according to application specific
criteria. Simple examples abound for this type of task. For example, employees in an employee database may
be classifed according to their salary into “High”, “Medium” and “Low” classes.

In this research we consider classifications that are definable by the user in two ways. First, a classification
is definable if the class values are explicitly assigned. The definition can be stated in the form of a series
of If .. Then statements. For example, consider the following sentences that define the employee salary
classification:

1. If an employee’s salary is less than $30,000 then assign the employee to the “low” salary class.

2. If an employee’s salary is between $30,000 and $60,000 then assign the employee to the “medium” salary
class.

3. If an employee’s salary is more than $60,000 then assign the employee to the “high” salary class.

A classification is derivable if the class values are assigned according to a calculation. For example, we
can assign employees to classes using the statement SalaryClass = floor(Salary/1000), which effectively
“bins” employees into salary ranges.

This research considers schemes that may be either definable or derivable to the extent that a user can
describe the classification in some declarable form. We do not consider algorithmic techniques encountered
in data mining, such as automatic cluster detection or discretization, which are described in [5,4].

In this research we present a declarative language that supports both definable and derivable classifica-
tions. We call the language a Mapping Query Language (MQL), since the user declares the mappings between
the input data and the classifications. The language has a syntax that succinctly describes the classifications
according to a set of rules. A BNF grammar is provided as an appendix to this paper. We compare our
approach with an Structured Query Language (SQL) approach in a controlled usability experiment.

The usability experiment seeks to determine whether one approach is superior to another in a controlled
fashion. Previous experiments have compared equivalent systems. That is, each system was fully equivalent
in expressible power. differing in syntactic form, or in interactiion style. This research differs from previous
approaches in that the language we describe is strictly weaker than SQL. Never the less, by focusing on a
specific work task (classification) the systems are comparable.

This paper is structured as follows. Section 1.1 provides pointers to the relevant literature most closely
related to this work. Section 2 provides a brief description of the rule-based language. In Section 3 we describe
the setup for our experiment. Section 4 provides the results from the usability experiments. Lastly, in Section
5 we provide directions for future research activities and summarize our findings.

1.1 Related Work

In this section we describe the relevant work that is related to this research. First, from a query language
perspective, our approach is based on Datalog. Descriptions of the theoretical aspects of Datalog can be
found in database texts, such as [1]. A comprehensive description of logic-based query languages is described
by Vianu in [10]. There are numerous references for SQL, including general texts [1,7] as well as language
standards [3]. From a data mining perspective, SQL has been used in support of various techniques. With
regards to classification tasks, very little work has focused on relational query languages, with the exception
being [6].

There have been numerous examples in the literature related to usability of query languages. The ap-
proaches tend to follow a fairly standard experimental design, in which two query languages are compared.
Early work by Reisner [9] forms the basis for many other experiments. Surveys that provide a compilation of
multiple experiments were provided by Reisner [8] and Welty [11]. A study by Yen and Scamell [12] compared
SQL to Query By Example (QBE) serves as the basis of our experiment design. More recently, comparisons
of diagramatic languages to SQL have been presented, including work by Catarci, et. al. [2].

2 The Rule-Based Language
Conceptually, we view the process of classifying data as shown in Figure 1. The class values that are assigned

can be expressed with database queries. We will continue with the employee salary example for the purposes
of describing our approach.

Classes

Input Data

Classifier

000

Fig. 1. The classification process

We assume a basic familiarity with relational database processing. Data is stored in tables that are
described by their schema, which is a finite set of attribute names. Given a table r over attributes R =
{4,B,C,...},let t € r be a tuple. A query g is a mapping from input schema to an output schema.

Our rule-based language specifies queries in the form of a finite list of rules. Each rule is of the form
Head «— Body, with the following semantics. The body of a rule is a boolean expression involving attribute
names and constants, as well as a small number of supported functions. For example, basic mathematical
functions such as addition and subtraction are supported. The head of a rule is an expression like the body,
except that it is not restricted to a {0, 1} result. Each rule head in a query must of the same data type. We
refer to the set of attributes used in the rules as the schema of the query.

Let P = {p1,...,pr} be a rule query and r be a table. For each t € r, let Head(t) be the value of the
expression Head when given t as input. Body(t) is defined in the same manner. The output schema of P is
R U Class, where R is the schema of the input table and Class is the class value assigned to each tuple.!
The following rule query defines the employee salary classification.

'Low' +— Salary < 30000
'"Medium' «— Salary >= 30000 and Salary <= 60000
'High' — Salary > 60000

Rules are evaluated in the order that they are defined. In addition, we support two different interpretation
strategies. Queries may be interpreted functionally or relationally. Under a functional interpretation, rules
are evaluated until a success is encountered. In contrast, a relational interpretation will evaluate every rule,
which provides for a single input tuple to be mapped to multiple classes.

We support two special types of rules to provide greater control over the process. A rule of the form
FExcept — Body excludes input tuples from further processing. A rule of the form Head «— Else allows for a
tuple to be mapped if all of the preceding rules failed. A BNF syntax description of the language is provided
as an appendix to this paper.

By design, the rule-based query language is restricted in terms of the types of queries that can be
expressed. While it is similar to Datalog in terms of its syntax, we do not support recursive queries or
negation in the head of the rule. With these restrictions, the queries can be executed in linear time by
processing one tuple at a time.

2.1 Equivalence to SQL

Each rule query is equivalent to an SQL query involving set operations. The proof of this equivalence is
based on a transformation from the rule-based language to SQL. Rather than providing the proof we provide
a sketch of the transformation process here. First, note that the body of a rule is essentially the same as
the SQL where clause. The head of a rule is the same as the SQL select clause. The following SQL query is
equivalent to the rule query that classifies employee salaries.

Select "Low", * from employee where salary < 30000
Union

Select "Medium", * from employee where salary >= 30000 and salary <=60000
Union

Select "High", * from employee where salary > 60000

Special care must be taken to support the Except and Else rules by creating more complicated where
clauses in the SQL queries. From a processing perspective, it is likely that SQL queries used for classification
tasks will be less efficient than the rule-based process. Note that the SQL queries may require multiple passes
through the input data. In addition, using SQL in support of classification tasks may require complex queries
to be written, which may be beyond the end-user’s ability.

3 Experiment Design

In order to understand the usefulness of our approach we have performed a controlled usability experiment.
This experiment seeks to quantify a user’s ability to solve classification tasks with either SQL or the rule-
based language. The focus is targeted only at classification tasks, and is not a broad comparison of fully
equivalent systems. SQL was chosen as the most appropriate comparative tool due to its predominant use
by both expert and novice users.

! The implementation provides the user with a mechanism for defining a unique name for Class.

3.1 Independent Variables

The independent variables used to control the experiment were:

1. User skill level (Low, Medium-Low, Medium-High, High)
2. Query language (SQL, Rule-Based Language)
3. Query complexity (Less complex, More complex)

Subjects for the experiment were recruited from a one-semester course in database systems as well as
professional programmers. Table 1 describes how user skill levels were assigned as well as the number of
subjects in each skill level.

User Description Skill Level Number
Undergraduate Student Low 27
Graduate Student Medium-Low 28
Professional experience < 3 years Medium-High 6
Professional experience >= 3 years High 4

Table 1. The base of experimental subjects

Half of the subjects performed classification tasks using either SQL or the rule language. The use of SQL
and the rule language was balanced within the groups. The same problems were attempted by each user.
Query complexity was based on the type of classification being performed. The complexity of the task was
calculated based on a model answer for the problem as formulated in the rule-based language. A complexity
score for a rule is defined according to the combined complexity of the head and the body, each of which
is given a score of 1 (simple) or 2 (complex). An expression is simple if it involves only constants or simple
boolean comparisons, otherwise it is complex. The total complexity score for a task is given by summing the
score for each rule. The score for our running example would be 6 - each rule involves only simple expressions
and there are 3 rules.

Tasks below the mean score for all tasks are considered less complex, while tasks that score above the
mean are considered more complex. It is important to note that the queries required to solve most of the
tasks in this experiment would be classified as complex in the previously reported experiments due to their
use of set operations.

Environment and Evaluation While we have a fully functioning implementation of the rule-based lan-
guage, we decided to administer the experiment by using a paper and pencil exam. This technique has been
frequently employed in previous experiments, and benefits from being efficiently administered to multiple
subjects simultaneously. Prior to participating in the exam, each subject filled out a short demographic
questionaire, which identified their skill level.

The exam was comprised of twelve classification problems against three different datasets. The datasets
were described in terms of the input schema of the table. The problems were worded in the form of english
sentences describing the desired classification.

Each subject was provided a training manual for the tool they were to use to solve the classification
tasks. Each user had some experience with writing SQL queries, so the SQL training material focused on the
writing of queries invlolving set operations. The rule-based language training materials were slightly longer
due to syntax differences. Both training manuals contained an identical set of example classification tasks as
well as solutions. After reviewing the training materials the users were asked to solve the twelve classification
problems.

The professional developers (expert users) were asked to complete both versions of the test. The order
of exposure was controlled, ensuring that half of the expert subjects first used SQL and then used the rule-
based language. The other half reversed this order of exposure. After completing both tests, the expert users
completed a satisfaction survey comparing the two approaches.

3.2 Subject Group Comparison

Because of the design of the experiment, there are several groups whose characteristics need to be considered.
Table 2 provides a summary of the information provided by the subjects that reported GPA’s. A test for
homogeneity of variances showed that the subject groups were comparable (p < .10).

Subject Description Average GPA (SD) Average Experience (SD)
Undergraduate Student 3.35 (0.47) 1.18 (0.62)
Graduate Student 3.64 (0.31) 1.00 (0.85)

Table 2. The average GPA and number of database courses for the student subjects.

The professional programmers were not asked to provide GPA’s. Instead, they were asked to report their
work experience (in years) with databases. As a group, the professional programmers averaged 4.2 years of
experience.

3.3 Dependent Variables

The dependent variables we measured with this experiment were: 1. User Accuracy, and 2. User Satisfaction.

Accuracy is a quantitave measurement of the user’s ability to solve classification problems with a specific
tool. Satisfaction is a qualitative measurement of the user’s feelings towards using a specific tool to solve
classification problems. We did not measure the time required to solve each problem for two reasons. First,
measuring time would have required the use of either an SQL interface as well as the implemented rule-based
system. The queries are more efficiently processed using the rule-based system, which we believe would unduly
influence the satisfaction measurement. Second, interacting with either system introduces possible side-effects
to the accuracy measurements. For example, subjects may fail to get the syntax of the query exactly correct
and become frustrated with either system leading to fewer problems attempted.

We determined the accuracy of a user’s solution using a technique similar to [12]. Each problem was
assigned the lowest of the possible scores shown in Table 3.

Score Description

3 Correct solution

2 Essentially correct solution (typographical errors)
1 Partially correct solution (missing conditions)

0 Incorrect solution, or unsolved

Table 3. Possible scores assigned to each problem solution

The scoring method is intentionally coarse. Each subject’s total score was computed by totaling their
score for each problem and dividing by the maximum number of possible points.

User satisfaction was determined by using a qualitative assessment survey. Two surveys were completed
by each student. The first survey was completed after reviewing the training material. The second survey
was completed after completing the exam problems.

3.4 Hypotheses

Figure 2 provides the hypotheses we seek to test with this experiment. By convention, each hypothesis is

statggh 5 PegRERCHOE S he only subjects that evaluated both approaches. As a result, the between-groups
comparisons are limited to the first approach evaluated by the expert users. Within-groups comparisons are
based on the order of exposure for expert users.

H1: There will be no difference in accuracy based on tool selection.

H2: There will be no difference in accuracy based on user skill level.

H3: There will be no difference in accuracy based on task complexity level.

H4: There will be no interaction between user skill level and task complexity on accuracy.
H5: There will be no interaction between user skill level and tool selection on accuracy.

H6: There will be no interaction between task complexity level and tool selection on accuracy.
HT7: There will be no difference in satisfaction based on tool selection.

HS8: There will be no difference in satisfaction based on user skill level.

H9: There will be no difference in satisfaction based on task complexity level.

H10: There will be no interaction between user skill level and tool selection on satisfaction.
H11: There will be no difference on user satisfaction for expert users based on the order of exposure.

Fig. 2. Experimental hypotheses

4 Results

In this section we report the results of the experiment. In the following subsections we report: 1. Efficiency,
2. Accuracy, 3. Satisfaction, 4. Professional programmers.

The statistical test employed for this analysis was the standard T-Test. The significance level employed
for all tests was 0.10. Note that the risk associated with making a type I error with either approach is small.

4.1 Efficiency

Often, usability experiments of this type will measure the efficiency with which users can solve problems.
Efficiency may be measured in terms of time; however, for this experiment time was a constraint placed
upon the user. Consequently, the time involved in solving problems would have a more significant effect on
effectiveness measures, since the lack of time to solve all of the problems would preclude users from fully
completing the problems. This was certainly the case with the student subjects, with only two subjects
providing solutions for every problem.

A different measure of effectiveness which can be reported for this experiment is the number of steps
involved in solving problems with each system. For example, a smaller number of steps with one system may
indicate an improvement efficiency . The problems given to the users in this experiment involved similar
steps with either system:

. Identify the classes to be generated.

. Define a condition for each class.

. Define the output value to be generated for each condition.
. Construct a simple query in SQL or the Rule language.

. Put the queries or rules in the correct order.

(SN GUR R

Syntactically, the solutions had the same number of rules or queries. For this experiment, then, the
systems are not separable. In the future, more elaborate experiments could be constructed to more closely
measure the cognitive impact of these languages.

It is clear that the rule language is less verbose than SQL, which allows for a comparison on this basis.
For example, the following rule program classifies patients according to their age:

'Newborns' «— Age < 3

'Children’ — Age > 3 AND Age < 12

' Adolescents' — Age > 13 AND Age < 18
'Adults’' — Age > 19 AND Age < 65
'Elderly' «— Age > 65

The equivalent SQL query is much more verbose:

Select "Newborns", * from Patient where Age < 3
Union

Select "Children", * from Patient where Age >= 3 and Age <= 12
Union

Select "Adolescents", * from Patient where Age >= 13 and Age <= 18
Union

Select "Adults", * from Patient where Age >= 19 and Age <= 65
Union

Select "Elderly", * from Patient where Age > 65

A word count (each term) of the rule language yields 37 words, while the SQL query has 61 words. Using
this measure, the SQL queries were all longer than the rule programs. The average word count for the rule
programs was 29.2 words, while the average for the SQL queries was 44.8 words.

Even though the rule language has the propensity to be more efficient using this measure, it is difficult
to draw any direct conclusions. It is more likely that the experiment has revealed this in an indirect way. For
instance, it is plausible that the lower satisfaction scores for SQL are related to the length of the solutions.

4.2 Accuracy

Table 4 shows the accuracy scores for each subject group.

Subject SQL |Mapping Language
Undergraduate Student|27 (17) |37 (10)
Graduate Student 26 (19) (24 (21)
Professional 97 (0.1)|96 (0.2)

Table 4. Mean accuracy scores for each group, as a percent of total. (standard deviation)

The low scores for the students is related to the limited time that was provided for the exam. The
difference in performance between the undergraduate and graduate student subjects is interesting. Note that
the performance of graduate and undergraduate students is indistinguishable when using SQL. However,
when using the mapping language, the undergraduate students performed better.

The lack of a similar relationship between accuracy scores for graduate students is a result of 4 students
that did not get any problem correct. When omitting these students the average accuracy score for graduate
students increases to 34% (SD 17), which tracks more accurately with the undergraduate result. The best
explanation we have is based on the mix of students in the graduate class, which has a higher number of
international students. It is possible that a language barrier was the primary influencer of the lower scores
for these students. Since we did not control for this variable, we retained these students scores, rather than
removing them from our result.

Table 5 reports the statistical tests for Hypothesis 1 - 3. Each result was tested at a 0.10 significance level.
When the hypothesis is rejected, we report the lowest significance level, even though our a priori test was
at 0.10. For the professional programmers we report both parts of the experiment: Prof-1 refers to the first

exarpy ProfiZ ofons 40 G deaend Ry Kon Ay RSty 16 t985ed Dot SRkuand Lhemanming lenenags:

accuracy as experience increases indicates that either tool can be used to solve such classification problems.
This is a positive result for the mapping language, since the subjects had no prior knowledge of the language.
Future work certainly needs to consider the effect of experience with the mapping language.

The results for Hypothesis 3 show that complexity of the solution does impact the accuracy. However, the
actual result is counterintuitive - subjects were more accurate with complex solutions. This was especially
true with SQL. In retrospect, controlling for complexity in the way we did is probably faulty. Note that the
more complex solutions were shorter, which most likely skewed the results.

Hypothesis t (critical value)|Result (p)

H1 -0.56 (£1.665) |Not Rejected (p > .10)
H2: Undergrad|-1.86 (£1.708) |Rejected (p < .10)
H2: Grad 0.29 (£1.706) |Not Rejected (p > .10)
H2: Prof -1 (0.44 (£1.86) Not Rejected (p > .10)
H2: Prof - 2 [0.26 (+1.86) Not Rejected (p > .10)
H3: SQL 2.4 (£1.665) Rejected (p < .10)
H3: MQL 1.82 (+1.665) |Rejected (p < .10)

Table 5. Statistical tests of the accuracy results (Hypothesis 1 - 3).

4.3 Satisfaction

Table 6 shows the results of the satisfaction surveys for the SQL group. Table 7 shows the results of the
satisfaction surveys for the Mapping Language group.

Subject Pre-Exam |Post-Exam
Undergraduate Student|1.82 (0.65)(2.45 (0.67)
Graduate Student 1.92 (0.80)|2.48 (0.81)
Professional 1.90 (0.78)|2.62 (0.56)

Table 6. Mean satisfaction scores (1=Best, ..., 5=Worst) for the SQL group. (standard deviation)

Subject Pre-Exam |Post-Exam
Undergraduate Student|2.09 (0.78)(2.01 (0.92)
Graduate Student 1.83 (0.57)|2.42 (0.58)
Professional 2.10 (0.60)|2.03 (0.68)

Table 7. Mean satisfaction scores (1=Best, ..., 5=Worst) for the Mapping Language group. (standard deviation)

What is interesting about the satisfaction scores is the relationship between the pre-exam and post-exam
scores. For the SQL group, the post-exam score is higher. Again, the undergraduate students are interesting,
in that their post-exam score is actually lower than the pre-exam score. Omitting the same 4 students as we
previously omitted still resulted in a higher post-exam satisfaction score for the graduate students, although
not as high as the SQL, graduate student group.

We compared the satisfaction scores to a target satisfaction score of 2.0, which would indicate that the
user subjectively believes that the tool is a “good” tool to use. The statistical test employed was a standard
T-Test with degrees of freedom set to the size of the sample minus 1. As a group, the SQL group’s post-exam
satisfaction scores indicated that SQL was not as good as they initially believed. For the Mapping Language
group, only the Graduate students exhibited the same behavior.

Table 8 reports the statistical results for Hypothesis 4 and 5. Again, we distinguish between the profes-

iongl ’s fi d d . . .
Slorﬁygf)%ﬁgg’g%egvgs 1rr%ge%rtled.s ote that this result compares the mean satisfaction score to 2.0 for the

post-exam satisfaction survey. This result is influenced by the decreased satisfaction in SQL. For Hypothesis
5 the results do not consider the tool. Rather, they simply indicate that either tool is subjectively considered
to be a good tool to solve classification problems.

Hypothesis t (critical value)|Result (p)

H4 1.69 (£1.665) |Rejected (p < .10)
H5: Undergrad|-1.45 (£1.708) |Not Rejected (p > .10)
H5: Grad 0.22 (£1.706) |Not Rejected (p > .10)
H5: Prof -1 (1.53 (£1.86) Not Rejected (p > .10)
Hb5: Prof - 2 |-0.86 (£1.86) |Not Rejected (p > .10)

Table 8. Statistical tests of the satisfaction results (Hypothesis 4 and 5).

4.4 Details of the Professional Programmer Experiment

In this subsection we report the results of statistical testing of Hypothesis 6 - 8. These hypotheses consider
whether there is any difference in accuracy and satisfaction for the professional programmers when given
both tools to solve problems. Table 9 reports the statistical results for these hypotheses.

Hypothesis|t (critical value)|Result (p)

H6 -0.01 (+£1.86) |Not Rejected (p > .10)
H7 -1.68 (£1.86) |Not Rejected (p > .10)
H3 6.11 (£1.833) |Rejected (p < .10)

Table 9. Statistical tests of the satisfaction results (Hypothesis 4 and 5).

Professional programmers had no problem with solving the problems with either tool, so there is no
surprise about the accuracy hypothesis (H6). The satisfaction hypothesis (H7) is close to rejection. Again,
the trend indicates that the subjects were less satisfied with SQL.

The significant result from Hypothesis 8 is based on a preference survey administered after using both
tools. The raw data was scored on a 1 to 5 scale:

Strong preference for SQL.
Preference for SQL.

No preference.

Preference for MQL.
Strong preference for MQL.

OUIR W N =

The professional programmers preferred the mapping language, with a mean preference score of 3.7 (sd
0.35). The mean score indicates a somewhat weak preference for the mapping language. However, for the
type of problem (classifications) no subject had a preference for SQL. This is especially positive for MQL,
since the subjects had no prior knowledge of the language.

5 Conclusion and Future Work

The usability experiment showed that the mapping language could be used by both experienced and lesser
experienced users with about as much accuracy as SQL. This in itself is encouraging, since the mapping
language was a new concept for the subjects.

The subjects were satisfied with both SQL and the mapping language. In general, the subjects were more
satisfied with the mapping language.

We took advantage of the time the professional programmers made available for the study. Ideally,
we would have liked many more professionals to participate in the study. The professionals had a strong
preference for the mapping language for all types of classification tasks. At the same time, they tended to
like SQL, since they had much more experience with it. The professionals were able to envision the benefits
of the mapping language, which translated into the higher preference scores.

References

ABITEBOUL, S., HuLL, R., AND VIANU, V. Foundations of Databases. Addison-Wesley, 1995.

2. Catarci, T. What happened when database researchers met usability. Information Systems 25, 3 (2000),
177-212.
3. DatE, C. J., AND DARWEN, H. A Guide to the SQL Standard. Addison-Wesley, Reading, Mass., 1993.
4. HAN, J., AND KAMBER, M. Data Mining: Concepts and Techniques. Morgan Kaufmann, 2001.
5. HAND, D., MANNILA, H., AND SMYTH, P. Principles of Data Mining. The MIT Press, 2001.
6. MEIER, A., SAVARY, C., SCHINDLER, G., AND VERYHA, Y. Database schema with fuzzy classification and
classification query language. In Computational Intelligence: Methods and Applications (2001).
7. RAMAKRISHNAN, R. Database Management Systems. McGraw-Hill, 1998.
8. REISNER, P. Human factors studies of database query languages: A survey and assessment. ACM Computing
Surveys 13, 1 (1981), 13-31.
9. REISNER, P., BOYCE, R., AND CHAMBERLIN, D. Human factors evaluation of two database query languages -
square and sequel. In Proceedings of the National Computer Conference (1975), pp. 447-452.
10. ViANU, V. Rule-based languages. Annals of Mathematics and Artificial Intelligence 19 (1997), 215-259.
11. WELTY, C., AND STEMPLE, D. Human factors comparison of a procedural and a nonprocedural query language.
ACM Transactions on Database Systems 6, 4 (1981), 626—649.
12. YEN, M., AND SCAMELL, R. A human factors experimental comparison of SQL and QBE. IEEE Transactions
on Software Engineering 19, 4 (1993), 390-402.
Appendix
<MAP _PROGRAM> 1= <RULE> [<Line Feed> <RULE>]*
<RULE> u= <HEAD> “<-” <BODY>
<HEAD> 2= <EXPRESSION>
| “Except”
<BODY> 2= <BOOLEAN_EXPR>
| “Else”
| Null
<BOOLEAN_EXPR> u= <CONDITIONAL_EXPR> [<BOOLEAN_OPERATOR>
<CONDITIONAL EXPR>*
| [“NOT”] “(<BOOLEAN_EXPR>
[<BOOLEAN_OPERATOR> <BOOLEAN_EXPR>|*
<BOOLEAN_OPERATOR> u= “AND” | “OR”
<CONDITIONAL EXPR> := <STATEMENT> [<RELATION> <STATEMENT>|
<STATEMENT> = [“NOT”] <EXPRESSION>
<RELATION> — “<7’ | “<=” | “>77 | “>=’7 | “=7’ | “!:”
<EXPRESSION> u= <EXPRESSION> [<OPERATOR> <EXPRESSION>|*
| “(” <EXPRESSION> “)”
| <FUNCTION>
| <ELEMENT>
<OPERATOR> = “+77 | “_” | [1% 32 | “/77 | “?7 | “&” | “#77 | “l”
<FUNCTION> = “ABS(” <EXPRESSION>)
| “FLOOR(” <EXPRESSION> “)”
| “CEIL(” <EXPRESSION> ©)”
| “SQRT(” <EXPRESSION> “)”
| “GRAYCODE(” <EXPRESSION> [«
<EXPRESSION>]* «)”
| “LENGTH(” <EXPRESSION> “)”
| “SUBSTRING(” <EXPRESSION> “r
<EXPRESSION> " <EXPRESSION> ¢)”
<ELEMENT> u= <VARIABLE>
| <CONSTANT>
| “” <EXPRESSION> ¢)”
<VARIABLE> w= A;€R
<CONSTANT> ::= number

| “string”

