Updating Association Rules Based on
Constraint Graph

Jason J. Jung' and Geun-Sik Jo!

Intelligent E-Commerce Systems Laboratory,
School of Computer Science and Engineering, Inha University,
253 Yonghyun-dong, Incheon, Korea 402-751
j2jung@intelligent.pe.kr, gsjo@inha.ac.kr

Abstract. Association rule mining from large dataset, such as Apriori,
is time-consuming task. In this paper, we examine the issue of main-
taining association rules from streaming dataset. In particular, we have
been focusing on the exploitation of two kinds of constraints generated
by users and adaptation. Based on our scheme, we provide the reduction
of a given dataset during mining process and the gathering information
while updating.

1 Introduction

Since association rule mining algorithm was introduced in [1], there have been
many studies focusing on how to find frequent patterns from a given itemset such
as market basket analysis. Traditionally, Apriori algorithm [2] and FP-Growth
[3] have been the most well-known methods. These algorithms, however, have
considered only static datasets. It means that the streaming dataset like online
transactional logs is difficult to be driven by generic Apriori-like algorithms. In
fact, many applications on the web have focused on mining sequential patterns
from data streams. For example, on-line newspaper article recommendation, web
proxy server for prefetching content, and user preference extraction for support-
ing adaptive web browsing can be told as the domains relevant to analyzing data
streams from many clients.

Several studies thereby have been proposed for maintaining the set of mined
association rules. FUP (Fast UPdate) is an incremental updating technique based
on Apriori and DHP (Direct Hashing and Pruning) [5]. After a set of new trans-
actions are piled up, FUP finds out new large itemsets from a new dataset and
compared them with old ones based on heuristics, in order to determine which
operation should be executed like removing losers, generating candidate sets, and
finding winners. Furthermore, FUP; was more generalized algorithm of FUP, as
handling other maintenanace problems [6]. In [4], DELI (Difference Estimation
for Large Itemsets) was proposed as a way of estimating the difference between
the association rules in a database before and after they are updated. DELI is
used as an indicator for whether the FUP5 should be applied to the database to
accurately find out new association rules. However, these algorithms are highly

2 Jason J. Jung and Geun-Sik Jo

time consuming, because they are basically composed of the repetition of the
same tasks such as scanning dataset, counting itemsets, and measuring their
supports in order to generate the candidate set finding out the large itemsets
iteratively.

In this paper, we have been focusing on the problem whose search space is
fixed with respect to the size, but dynamic with respect to time. We applied
constraint satisfaction techniques to improve the performance of the association
rule mining from this kind of problems. We thereby propose how to organize
constraint graphs and how to reduce the search space of a given dataset based
on these constraints.

2 Problem Description

A set of literals, called items is represented as X. Let D be a set of transac-
tions, where each transaction T is the i-th itemset {x1,z2,...,Zq,...,Tn}i. In
gerneral scheme of data mining, we say that a transaction 7; supports not only
an item x4 ;) but also the other items related to this item. These relationships
are explicitly predefined as hierarchical taxonomies. In this paper, we assume
that the new dataset db is added to old dataset DB. During merging these two
datasets, because the space storing dataset is limited, some itemsets from DB
and db should be removed by constraint conflictions.

Start T, Ty Data
Stream

S ——-

< -

Fig. 1. Streaming Dataset and Sliding Window

As shown in Fig. 1, the merged dataset therefore can be fragmented. The
size of sliding window (Tp to T) is larger than that of all fragmented itemsets.
Therefore, we note the problem statements concentrated for updating association
rules from streaming dataset in this paper, as follows.

— Dataset Filtering. Conceptually this task should prune the search space
of a given data mining problem and also satisfy the space constraints by
transforming into an equivalent one operating on a smaller dataset.

— Gathering Information While Updating. Generally this task learns
experience in a search, in order to avoid the same mistake in the future.
While updating frequent itemsets from data stream, the existing constraints
may be more tight or loose. Especially, new constraints can be generated.

Updating Association Rules Based on Constraint Graph 3

Users generally define the minimum support as the threshold value for mining
frequent patterns. Minimum support can be regarded as an explicit constraints
for dataset filtering. Meanwhile, implicitly recognized constraints should be also
stored, in order to increase the performance of mining process. Contrary to
user-defined constraints, constraints discovered while updating can discriminate
whether a given dataset should be counted or not.

3 Organizing Constraint Graph

We have noted two kinds of constraints, which are user-defined and inductively
gernated constraints as follows.

— User-defined constraint. This should be, in advance, explicitly config-
urated. The taxonomy of items and minimum support of an item can be
classified into this category.

— Inductively generated constraint. This is implicit constraints generated
during on-line mining tasks. For this constraint, we need to establish several
functions.

It means that constraint graph, firstly, should be configured through the
user’s requests represented as predefined operators. Then, this graph can keep
adjusting itself to on-line streaming dataset.

Basically, we assume that three kinds of simple functions are applicable to
define an explicit constraint in this paper. These are existence, equality, and
comparison. In particular, the taxonomy constraint is explicitly established as
hierarchical tree structure. Therefore, as mentioned in [11], we need to devide
the existence function into the functions ancestors and descendants, in order
to more specifically indicate the relationship between items of this tree.

MinSup - .
X —— Explicit Constraint

easssP- |mplicit constraint

[4
.
o®

Fig. 2. Two kinds of constraints

For example, in Fig. 2, parents and child nodes of node B can be simply
described as:

ancestors(B)
descendants(B) =

4 Jason J. Jung and Geun-Sik Jo

in which inclusion constraints are implying. Also, minimum support, as another
explicit constraint, can be represented as the equality and comparison functions.
After each item is put different restrictions (e.g., support or confidence), they
can be compared with each other, as follows:

Sup(A) > HSup (3)
Sup(A) > Sup(X) x 2 (4)

where 0g,, is the user-specified minimum support. More importantly, a dotted
arrow means the implicit constraint generated while adding new dateset. In order
to represent this kind of constraints,

4 Maintenance of Association Rules

As sliding windows is shifted (in Fig. 1) by newly inserted data, consistency
checking should be applied to test their satisfiability.

4.1 Consistency Checking by Constraint Graphs

We have described how to organize constraint graph by users. Basically, in order
to reduce search space of a given problem, consistency checking can be con-
ducted. It finds out the redundant parts that we should not scan any more. We
are focusing on node-consistency (NC) and arc-consistency (AC). NC checking
is based on unary constraints involved with a particular item x;. Algorithm NC
presents the pseudo code for node-consistency achievement:
Algorithm NC
Input:
Time Window, TW = [Ty, ..., Tn];
Old Dataset, DB; New Dataset, db;
Set of Assoication Rules Discovered from DB, Rpp;
Constraint Graph, CG;
Procedure:
begin
i +— N;
while ¢ > (N — |db]) and T; € TW do
begin
for each z; € T; do
Update(z;);
if (not Satisfies(zx;, CG1(x;))) then
Prune(x;)
1—1—1;
end
Prune(<list of conflicted items>, DB);
end.

Updating Association Rules Based on Constraint Graph 5

In this code, the function Update(x;) represents the aggregation operations
related to input node, such as counting. The function Satisfies(z;, CGi(z;))
evaluates input node x; with unary constraints involved in the corresponding
node. More importantly, the function Prune removes the transactions conflicted
with from old dataset DB. For example, let the minimum support of an item
x; be Ogyp(x;). During checking NC of new dataset db, transactions including x;
can be pruned, as shown in the following equation:

count(z;, db) > Ogyp(z;) x (|DB| + |db|) — Sup(x;, DB) x |DB| (5)

where count is the function for counting the itemset including an item in a given
dataset.
AC checking is based on binary constraints involved with a pair of item z;
and z;. An AC achievement algorithm is shown below:
Algorithm AC
Input:
Time Window, TW = [Ty, ..., Tn];
Old Dataset, DB; New Dataset, db;
Set of Assoication Rules Discovered from DB, Rpp;
Constraint Graph, CG;
Procedure:
begin
k— N;
while k > (N — |db|) and T}, € TW do
begin
for each z; € T}, do
NC(z;);
if (not Satisfies(xz;,CGa(x;))) then
Prune(z;)
k—k-—1;
end
Prune(<list of conflicted items>, DB);
end.

After NC of a certain item, we can retrieve binary constraints by function
CGs. If a user establishes a constraint

“For an item @, 3°, ciescendents(z) [SuP(@i)] = Sup(y)”,
transactions including x; can be pruned, as shown in the following equation:
count(descendents(x), db)

db
> (count(y, DB) — count(descendents(x), DB))||DBJ| + count(y + 6, db) (6)
where ¢ is the variable for estimated value with respect to the ratio of new

datasets (%).

6 Jason J. Jung and Geun-Sik Jo

4.2 Gather-Information-While-Updating

While scaning datasets for finding frequent large itemsets, constraints can be
adaptive to new datasets. As a matter of fact, due to the difficulties of the de-
scription of constraints, users have to be supported, as constraint information
is notified. To do this, we need to define some problem-depended functions for
retrieving new information from transaction data. During shopping, as an ex-
ample, a group of customers under the similar circumstance (e.g., preferences
and economical condition) have almost the same behavioral patterns such as the
number of items, the total price of all items, and the quality of items in a basket.

5 Conclusions and Future Work

In this paper, we have considered the problem of analyzing the streaming data
for efficiently updating association rules. We have proposed consistency check-
ing scheme based on user-defined constraints, as filtering redundant part of data.
Moreover, gathering information while updating have been proposed to adap-
tively control the tightness of constraints of given problems.

As a future work, we need the additional research for applying not only NC
and AC, but also path consistency (PC) checking.

References

1. Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets of
items in large databases. In Proc. of the ACM SIGMOD Conference on Manage-
ment of Data (1993) 207-216

2. Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules. In Proc.
of the 20th VLDB Conference (1994)

3. Han, J., Pei, J.: Mining Frequent Patterns by Pattern-Growth: Methodology and
Implications. ACM SIGKDD Explorations (2000) 31-36

4. Lee, S.D., Cheung, D.W.: Maintenance of Discovered Association Rules: When to
Update? In Proc. of ACM SIGMOD Workshop on Data Mining and Knowledge
Discovery (DMKD) (1997)

5. Cheung, D.W., Han, J., Ng, V.T., Wong, C.Y.: Maintenance of Discovered Rules
in Large Databases: An Incremental Updating Technique. In Proc. of Int. Conf.
on Data Engineering (1996) 106-114

6. Cheung, D.W., Lee, S.D., Kao, B.: A General Incremental Technique for Maintain-
ing Discovered Association Rules. In Proc. of Int. Conf. on Database Systems for
Advanced Applications (DASFAA) (1997) 185-194

7. Zheng, Q., Xu, K., Ma, S.: When to Update the Sequential Patterns of Stream
Data? In: Whang, K.-Y., Jeon, J., Shim, K., Srivastava, J. (eds.): Advances in
Knowledge Discovery and Data Mining. Lecture Notes in Artificial Intelligence,
Vol. 2637. Springer-Verlag (2003) 545-550

8. Hidber, C.: Online Association Rule Mining. In Proc. of the ACM SIGMOD Con-
ference on Management of Data (1999) 145-156

9. Pudi, V., Haritsa, J.: How Good are Association-rule Mining Algorithm? In Proc.
of the 18th Int. Conf. on Data Engineering (2002)

Updating Association Rules Based on Constraint Graph 7

10. Wojciechowski, M., Zakrzewicz, M.: Dataset Filtering Techniques in Constraint-

11.

Based Frequent Pattern Mining In: Hand, D.J., Adams, N.M., Bolton, R.J. (eds.):
Pattern Detection and Discovery. Lecture Notes in Computer Science, Vol. 2447
Springer-Verlag (2002) 77-91

Srikant, R., Vu, Q., Agrawal, R.: Mining Association Rules with Item Constraints
In Proc. of the 3rd Int. Conf. on Knowledge Discovery and Data Mining (1997)
67-73

