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Abstract. Semi-automatic data mining approaches often yield better results than
plain automatic methods, due to early integration of the user’s goals. For exam-
ple in the medical domain, experts are likely to favor simpler models instead of
more complex models. Then, the accuracy of discovered patterns is often not the
only criterion to consider. Instead, the simplicity of the discovered knowledge is
of prime importance, since this relates directly to the understandability and the
interpretability of the learned knowledge.
In this paper, we present quality measures considering the understandability and
the accuracy of (learned) rule bases. We describe an unifying quality measure,
which can trade-off small losses concerning accuracy vs. increased simplicity.
Furthermore, we introduce a semi-automatic data mining method for learning
understandable and accurate rule bases. The presented work is evaluated using
cases from a real world application in the medical domain.

1 Introduction

Automatic methods for learning rules commonly perform well, concerning the classi-
fication accuracy of the learned models. However, often the understandability of the
learned patterns is poor, which is problematic if the learned knowledge should be man-
ually processed in further steps. Semi-automatic approaches often yield better results
than plain automatic methods, due to early integration of the user’s goals. In such semi-
automatic scenarios, the learned knowledge is not used as a black-box reasoning en-
gine, but can be refined incrementally by other techniques, e.g., human interpretation.
Furthermore, semi-automatic learning methods can incorporate additional background
knowledge for further quality improvements. When guiding the knowledge discovery
process, it often turns out that user interests concerning the accuracy of the learned
knowledge are not related to other aspects, e.g., simplicity of the patterns [1,2]. So, the
knowledge discovery method should take both accuracy and simplicity of the learned
knowledge into account.

In this paper, we present quality measures for rating the simplicity of a learned
rule base, and we will briefly introduce a semi-automatic learning method for simple
scoring rules. Besides the discussed quality measures we propose an unifying quality
measure balancing the accuracy and the understandability of a given rule base. It is
worth noticing, that the presented measures are not only applicable to scoring rules



but can be easily generalized to other rule-based approaches, e.g., association rules.
However, in this paper we will focus on the application of scoring rules.

The rest of the paper is organized as follows: In Section 2 we define the basic no-
tions used in this paper, and we introduce diagnostic scores implemented by scoring
rules as an intuitive concept for representing diagnostic knowledge. In Section 3 we
present simplicity measures for diagnostic scores and scoring rules. These measures are
used to determine the understandability of the learned knowledge. We present an uni-
fying quality measure taking both the simplicity and the accuracy of the rule base into
account. In Section 4 we outline a method for learning diagnostic scores, and discuss
additional background knowledge that is applicable to the learning task. An evaluation
using a real-world case base is given in Section 5. We conclude the paper in Section 6
discussing the presented work, and we show promising directions for future work.

2 Diagnostic Scores using Scoring Rules – an Overview

Before describing diagnostic scores, we first define the knowledge representation schema.
Let ΩQ be the universe set of all questions available in the problem domain. In the con-
text of machine learning methods, questions are commonly calledattributes. A value
v ∈ dom(q) assigned to a questionq ∈ ΩQ is called afinding, and we callΩF the set
of all possible findings in the given problem domain. A findingf ∈ ΩF is denoted by
q:v for q ∈ ΩQ andv ∈ dom(q). The setFq ⊆ ΩF of possible findings for a given
questionq is defined asFq = {f ∈ ΩF | f = q:v∧v ∈ dom(q)}. Each findingf ∈ ΩF
is defined as a possible input of a diagnostic knowledge system.

Let d be adiagnosisrepresenting a possible output, of a diagnostic knowledge sys-
tem. We defineΩD to be the universe of all possible diagnoses for a given problem
domain. With respect to a given problem, a diagnosisd ∈ ΩD is assigned to a symbolic
statedom(d) = {unprobable, undefined , probable}.

A casec is defined as a tuplec = (Fc,Dc, Ic ) , whereFc ⊂ ΩF is the set ofob-
served findingsfor the given case. The setDc ⊆ ΩD contains the diagnoses describing
the solution of the casec, andIc contains additional (meta-) information describing
the casec in more detail. The set of all possible cases for a given problem domain is
denoted byΩC . For the learning task, we consider a case baseCB ⊆ ΩC containing
all available cases that have been solved previously.

Diagnostic scores, e.g., [3,4] are a rather wide spread formalism for medical deci-
sion making. For inferring a diagnosis, a limited number of findings is used in a regular
and simple to interpret manner. In its simplest form, each observed finding individu-
ally contributes one point to an account. If the total score of the account exceeds a
given threshold, then the diagnosis is established. Diagnostic scores are commonly im-
plemented using scoring rules, which are used to infer a specific diagnosis. Asimple
scoring ruler is denoted byr = f

s→ d , wheref ∈ ΩF is a finding, andd ∈ ΩD is the
target diagnosis. For each rule a symbolic confirmation categorys ∈ Ωscr is attached
with Ωscr ∈ {S3, S2, S1, 0, S-1, S-2, S-3 } . Formally, a diagnostic scoreDS (d) for a
diagnosisd ∈ ΩD is defined as the set of scoring rulesr ∈ R that containd in their
rule action, i.e.,DS (d) = {r ∈ R | r = f

s→ d ∧ f ∈ ΩF} . Let ΩR be the universe of



all possible rules for the setsΩF , ΩD andΩscr . Then, we callR ⊆ ΩR the rule base
containing the inferential knowledge of the problem domain.

Confirmation categories of scoring rules are used to represent a qualitative degree
of uncertainty. In contrast to quantitative approaches, e.g., Bayesian methods, symbolic
categories state the degree of confirmation or disconfirmation for a diagnosis. In this
way, a symbolic categorys expresses the uncertainty for which the observation of find-
ing f will confirm/disconfirm the diagnosisd. Whereass ∈ {S1, S2, S3} stand for
confirming symbolic categories in ascending order, the categoriess ∈ {S-1, S-2, S-3}
are ascending categories for disconfirming a diagnosis. A rule with category0 has no
effect on the diagnosis’ state, and therefore is usually omitted from the rule base. It
is worth noticing, that the value rangeΩscr of the possible symbolic categories is not
fixed. For a more detailed (or coarse) representation of confirmation the value range
may be extended (or reduced).

For a given casec ∈ ΩC the final state of each diagnosisd ∈ ΩD is determined
by evaluating the available scoring rulesr ∈ R targetingd. Thus, rulesr = f

s→ d
contained inR are activated, ifff is observed in casec, i.e., f ∈ Fc. The symbolic
categories of the activated rules are aggregated by adding the categories in a way, so that
four equal categories result in the next higher category (e.g.,S1 +S1 +S1 +S1 = S2),
and so that two equal categories with opposite sign nullify (e.g.,S1 + S-1 = 0). For
a more detailed or coarse definition ofΩscr the aggregation rules may be adapted. A
diagnosis is assumed to beprobable(i.e., part of the final solution of the case), if the
aggregated score is greater or equal than the symbolic categoryS3. Analogously, a
diagnosis is assumed to beunprobable, if the aggregated score is less or equal than the
symbolic categoryS-3.

Related Work.Scoring rules have proven to be useful in large medical knowledge bases,
e.g., in the INTERNIST/QMR project [5]. In our own work with the shell-kit D3, scores
have been applied successfully in many (large) knowledge system projects, e.g., in a
geo-ecological application [6] or in medical domains and technical domains [3] using
generalized scores.

3 Quality Measures for Diagnostic Rule Bases

When we consider the quality of the learned knowledge in the semi-automatic setting,
then we are not only interested in classification accuracy, but also in understandability
of the learned patterns. The understandability of the learned scores is typically defined
by its simplicity, which can be measured with respect to the learned scoring rules in the
rule baseR ⊆ ΩR. If the learned rules have a low complexity, then it is easier for the
expert/user to understand the corresponding scores.

In general, a score is considered to be the more complex, the more findings it con-
tains. This directly corresponds to the number of learned rules per diagnosis. An overall
impression of the simplicity of the learned scores is given by the total number of learned
rules. Furthermore, as a global simplicity measure we count the total number of find-
ings used in scoring rules of the rule base. Usually a moderate number of findings is
considered more comprehensible than a huge number of findings. In the following we
discuss simplicity measures and accuracy measures for diagnostic scores.



Simplicity Measures.It is difficult to determine the simplicity of a rule base by only
one measure. For definingglobal simplicity measures, we consider the rule base as a
whole.Local variants, considering a specific knowledge item, i.e., a diagnostic score,
can be defined accordingly. In contrast to the local simplicity measures the use of global
measures is appropriate for comparing the understandability of different rule bases. We
consider the following issues and define corresponding functions applied on scoring
rule bases.

– APPLIED FINDINGS: Number of findings used in the rule base; the rule base is
much simpler to survey, if fewer findings are used to describe the scores.

– RULE BASE SIZE: Overall number of learned scoring rules; obviously the num-
ber of scoring rules is a direct measure for the complexity of the learned knowl-
edge. However, for a more detailed analysis of the rule base complexity the applied
classes of confirmation categories should be considered. Thus, the interpretation
of scoring rules categorically establishing or excluding a diagnosis, i.e.,S3, S-3, is
very simple, when compared to scoring rules with less certain confirmation cate-
gories, e.g.,S1, S-1.
Therefore, it is suggestive to define a weighting functionw : Ωscr → IN for
confirmation categories. In the context of our work we definedw(s) = 1 for
s ∈ {S3, S-3}, andw(s) = 2 otherwise. Thus, we define a categorys ∈ Ωscr \
{S3, S-3} to be as double complex as the categoriesS3, S-3, which are categorically
(de)establishing a diagnosis.
In summary, the measure RULE BASE SIZE is simply defined by the count of the
rules contained in the rule base. A more refined measure RULE BASE SIZE for a
rule baseR ⊆ ΩR is defined as follows

RULE BASE SIZE(R) =
∑
r∈R

w
(
category(r)

)
. (1)

– MEAN SCORING RULES: This measure gives the mean number of rules for scoring
a single diagnosis, and can be derived from RULE BASE SIZE. Obviously, less scor-
ing rules for a diagnosis are much simpler to understand than more rules. Similar
to the measure RULE BASE SIZE, it can be computed using the weighted categories
or by directly counting the number of rules.

– MEAN SCORE CATEGORIES: Mean number of different confirmation categories
applied for scoring a single diagnosis. A smaller number of distinct categories al-
low for a much simpler interpretation of the diagnosis score, since confirmation
strengths of the findings contributing to a score are less distributed. This measure
is indirectly dependent on the global number of different confirmation categories
defined, i.e.,|Ωscr |. A small universe of possible confirmation categories allows for
a simpler distinction between the single categories.

In addition to the simplicity measures, the second part of the quality measures for the
semi-automatic learning task are measures concerning the accuracy.

Accuracy Measures.There exists a variety of methods for assessing the accuracy of
individual rules, or the whole rule base. Several factors need to be considered. For a
two-class prediction problem, e.g., predicting a single diagnosis, we have to consider
four possible outcomes, shown in the following table.



Predicted Class = YESPredicted Class = NO
Actual Class = YES True Positive False Negative
Actual Class = NO False Positive True Negative

The true positives and true negatives are correct classifications. If the class is in-
correctly predicted as ’YES’ while it is in fact ’NO’, then we have a false positive.
Likewise, if the class is incorrectly predicted as negative while it is in fact positive, then
we have a false negative. For the different measures the trade-off between these classi-
fication alternatives has to be taken into account. In the following,TP, FP, TN,FN
denote the number of true positives, false positives, true negatives, and false negatives,
respectively.

For measuring the different tradeoffs between correct and false classifications, there
exist several measures likesensitivity(TP/(TP +FN)), specificity(TN/(TN +FP ))
from diagnosis, or likewiseprecision(TP/(TP + FP )) andrecall (same as sensitiv-
ity) from information theory. Thesuccess rate, or efficiency, is a widely used measure:
(TP + TN)/(TP + TN + FP + FN). However, a single diagnosis, which is not
predicted very frequently, and which also does not occur very frequently as the correct
diagnosis of a case, might get a better rating, than a diagnosis which occurs more fre-
quently. This is especially relevant, if we apply a case base with multiple disorders, as
experienced in our evaluation setting. Therefore we used theF-measure, for all applied
diagnosesd ∈ ΩD. TheF-measure, the harmonic mean between recall and precision,
is defined as follows:

F (Dc,Ds) =
(β2 + 1) · prec(Dc,Di) · recall(Dc,Dp)

β2 · prec(D1,D2) + recall(D1,D2)
, (2)

whereDc is the correct solution andDp specifies the proposed, inferred solution.β
denotes a constant weight for the precision, where usually a default ofβ = 1 is used.

An Unifying Quality Measure for Semi-Automatic Learning Methods.In a semi-auto-
matic scenario, the user wants to obtain an overview of the quality of the learned knowl-
edge. Concerning accuracy and simplicity of the learned knowledge, often there is a
trade-off between these two measures. Then, quite accurate learned models are quite
complex, while simpler ones lack performance. So the two measures need to be bal-
anced. Also, user quality standards need to be taken into account regarding simplicity,
since simplicity is subjective to the user’s goals and is also dependent on the applied
domain. We combine a normalized simplicity measure and the accuracy measure into
a single quality measure. For the simplicity measure we first define a local simplicity
measure SCORING RULES, which gives the absolute number of scoring rules for scor-
ing a single specific diagnosis. Then, the function SCORING RULES(DS (d)) returns the
number of scoring rules learned for the specified diagnostic scoreDS (d).

For the definition of the unifying quality measureQM , we first introduce a normal-
ized simplicity measure concerning a single diagnostic scoreDS (d).

NSM
(
DS (d)

)
= 1−

SCORING RULES
(
DS (d)

)
− 1

SCORING RULES
(
DS (d)

)
+ γ

, (3)

whereγ is a generalization parameter, with default valueγ = 1. If γ is set to larger
values, then larger scores will get an increased simplicity value. SinceNSM (DS (d)) ∈



[0; 1], the maximum valueNSM (DS (d)) = 1 is obtained, if a diagnosisd is predicted
with a single rule, i.e., if the score has the size one.

We propose to combine this measure with the accuracy in a term similar to the F-
measure balancing both measures. Then, the unifying quality measureQM : 2ΩR →
[0; 1] for a rule baseR is defined as follows,

QM (R) =
1

|ΩD|
∑

d∈ΩD

(α2 + 1) ·NSM
(
DS (d)

)
·ACC

(
DS (d)

)
α2 ·NSM

(
DS (d)

)
+ ACC

(
DS (d)

) , (4)

where the functionACC
(
DS (d)

)
calculates the accuracy of the specified diagnostic

scoreDS (d) using the F-measure. The factorα is a weight balancing simplicity vs.
accuracy. We usedα = 1 for our experiments.

Related Work.Favoring simple rules is in line with a classic principle of inductive
learning methods called Ockham’s Razor [7]. Existing interestingness measures apply-
ing this principle generate compact rules [8], for example, which takes the number of
rules, the number of conditions in a rule, and the classification accuracy of a rule into
account. A general measure discussed by [9] takes the size of the disjuncts of a rule
into account. Due to the fact that we only consider simple scoring rules not containing
disjuncts, this measure is not applicable to diagnostic scores. We purely concentrate on
the syntactic elements contained in the rule baseR. For a localized evaluation, we pro-
pose an unifying quality measure, which combines both aspects, i.e., the simplicity and
the accuracy. This measure with fixed upper and lower bounds provides a first intuitive
evaluation for the user.

4 Learning Diagnostic Scores

In the following we outline the method for learning diagnostic scores. Due to the limited
space we refer to a previous paper [10] for an in-depth discussion of the algorithm.

For learning diagnostic scores we first have to identify dependencies between find-
ings and diagnoses. In general, all possible combinations between diagnoses and find-
ings have to be taken into account. However, to reduce the search space, we only con-
sider the findings occurring most frequently with the diagnosis. In summary, we basi-
cally apply three steps for learning a diagnostic scoring rule:
1. Identify a dependency between a findingf ∈ ΩF and a diagnosisd ∈ ΩD
2. Rate this dependency and map it to a symbolic categorys ∈ Ωscr

3. Finally, construct a diagnostic rule:r = f
s→ d

Identify Dependencies.For each diagnosisd ∈ ΩD, we create a diagnostic profile
containing the most frequent findings occurring with the diagnosis. We consider all
attributes (questions) in the profile selecting the findings which are observed in the
case base. For each findingf = q:v we apply theχ2-test for independencefor binary
variables, i.e., variableD for diagnosisd and variableF for finding f , respectively.D
andF measure ifd andf occur in a case. If they occur the respective variable is true
and false otherwise.



For all dependent tuples(F,D) we derive the quality of the dependency, i.e., the
strength of the association using theφ-coefficient,φ(F,D) ∈ [−1; 1], which is a corre-
lation measure between two binary variables. We use it to discover positive or negative
dependencies. A positive value ofφ(F,D) signifies a positive association, whereas a
negative value signifies a negative one. If the absolute value ofφ(F,D) is less than
a certain thresholdthresholdc, i.e., |φ(F,D)| < thresholdc, then we do not consider
this weak dependency for rule generation. For the remaining dependencies we generate
rules described as follows: Ifφ(F,D) < 0, then we obtain a negative association be-
tween the two variables, and we generate a rulef

s→ d with a negative categorys. If
φ(F,D) > 0, then we construct a rulef

s→ d with a positive categorys.

Mapping Dependencies.For determining the exact symbolic confirmation category of
the remaining rulesr, we utilize two measures used in diagnosis:precisionand thefalse
alarm rate (FAR). The precision of a ruler is defined asprec(r) = TP/(TP + FP ) ,
whereas the false alarm rateFARfor a ruler is defined asFAR(r) = FP/(FP +TN) .

To score the dependency, we first compute aquasi probabilistic score (qps)which
we then map to a symbolic category. The numericqps score for a ruler is computed as
follows qps(r) = sgn

(
φ(D,F )

)
∗ prec(r)

(
1 − FAR(r)

)
. We achieve a tradeoff be-

tween the accuracy of the diagnostic scoring rule to predict a disease measured against
all predictions and the proportion of false predictions. Theqps-scores are mapped to
the symbolic categories according to the following conversion table (ε ≈ 0):

qps(r) category(r)qps(r) category(r)
[-1.0, -0.9)⇀ S-3 (ε, 0.5) ⇀ S1

[-0.9, -0.5)⇀ S-2 [0.5, 0.9)⇀ S2

[-0.5,−ε) ⇀ S-1 [0.9, 1.0]⇀ S3

We accept the loss of information to increase the understandability and to facilitate a
user-friendly adaptation of the learned diagnostic scores.

Including Background KnowledgeThe presented algorithm can be augmented with
background knowledge in order to achieve better learning results. We introduce abnor-
mality information and partition class knowledge as appropriate background knowl-
edge.

If abnormalityinformation about attribute values is available, then each valuev of
a questionq is attached with an abnormality label. It explains, whetherv is describing
a normal or an abnormal state of the question. For example, consider the choice ques-
tion temperature with the value range:normal, marginal, high. The valuesnormaland
marginal denote normal values of the question, whereas the valuehigh describes an
abnormal value. We will use these abnormalities, for further shrinking the size of the
generated rule base. Letr = q:v

s→ d be a scoring rule. Ifs ∈ Ωscr denotes a positive
category andv is a normal value of attributeq, then we omit ruler, since findings de-
scribing normal behavior usually should not increase the confirmation of a diagnosis.
Furthermore, ifs denotes a negative category andv is an abnormal value of attribute
q, then we likewise omit ruler, because an abnormal finding usually should not de-
crease the confirmation of a diagnosis, but possibly increases the confirmation of other
diagnoses.



As a second type of background knowledge the expert can providepartition class
knowledge describing how to divide the set of diagnoses and attributes into partially
disjunctive subsets, i.e., partitions. These subsets correspond to certain problem areas
of the application domain. For example, in the medical domain of sonography, we have
subsets corresponding to problem areas likeliver, pancreas, kidney, stomach, and in-
testine. This knowledge is especially useful when diagnosing multiple faults. Since a
case may contain multiple diagnoses, attributes occurring with several diagnoses will
be contained in several diagnostic profiles. We reduce noise and irrelevant dependencies
by pruning such discovered dependenciesf → d, for whichf andd are not in the same
partition class.

5 Evaluation

We evaluated the presented methods with cases taken from a medical application, which
is currently in routine use. The applied SONOCONSULT case base contains1340 cases,
with a mean of diagnosesMd = 4.32 ± 2.79 and a mean of relevant findingsMf =
76.89 ± 20.59 per case. SONOCONSULT [11] is a knowledge-based documentation
and consultation system for sonography. It is developed and maintained by the domain
experts using the shell-kit D3 [12]. The quality of the derived diagnoses usually is very
good, i.e., the solutions are correct in nearly all cases.

For the evaluation of our experiments we adopted the F-measure introduced in Sec-
tion 3, adapting this to the multiple disorder problem occurring in our case base (cf. [10]
for details). Furthermore, a stratified 10-fold cross-validation method was applied. We
performed two experiments, to determine the impact of including background knowl-
edge into the learning process. For experimentE0we applied no background knowledge
at all. To demonstrate how the utilization of knowledge improves the results, we used
both partition class knowledge and abnormality knowledge for experimentE1. We cre-
ated several sets of scores depending on the parameterthresholdc, which describes
the correlation threshold used in the learning algorithm Two criteria – accuracy and
simplicity – as outlined in Section 3, were used to define the quality of the scores.

The results are presented in the following tables. Columnthresholdc specifies the
correlation threshold,QM1 shows the combined quality measure with the default pa-
rameterγ = 1, whereasQM5 andQM10 show the measure with a parameterγ = 5
andγ = 10, respectively.MR corresponds to the measure MEAN SCORING RULES, at-
tached with standard deviation.RBSdescribes the measure RULE BASE SIZEwith total
number of rules in addition to the number of weighted rules in parentheses (as described
in Section 3). The columnSCcorresponds to the measure MEAN SCORE CATEGORIES.
ColumnAF shows the number of applied findings, i.e., the values of the measure AP-
PLIED FINDINGS. Finally, we depict the accuracy of the rule base using the F-measure
in columnACC.



Experiment E0: no knowledge used
thresholdc QM1 QM5 QM10 ACC RBS (w) MR AF SC

0.2 0.15 0.33 0.46 0.94 2201 (3798) 30.58± 16.83 395 3.49
0.3 0.21 0.41 0.54 0.92 1510 (2466) 20.97± 10.59 348 3.20
0.4 0.27 0.49 0.61 0.90 1069 (1647) 14.85± 7.02 297 2.98
0.5 0.34 0.56 0.68 0.89 770 (1101) 10.70± 4.90 247 2.67
0.6 0.40 0.61 0.72 0.83 594 (789) 8.24± 3.51 207 2.32
0.7 0.51 0.70 0.77 0.81 369 (413) 5.13± 2.13 158 1.44

Experiment E1: using partition class and abnormality knowledge
thresholdc QM1 QM5 QM10 ACC RBS (w) MR AF SC

0.2 0.39 0.59 0.68 0.88 594 (990) 8.25± 5.00 180 2.60
0.3 0.45 0.64 0.72 0.86 437 (693) 6.07± 3.30 153 2.38
0.4 0.51 0.68 0.75 0.85 328 (495) 4.56± 2.15 131 2.12
0.5 0.58 0.72 0.77 0.84 240 (335) 3.34± 1.36 113 1.78
0.6 0.62 0.73 0.77 0.78 188 (245) 2.61± 1.04 101 1.49
0.7 0.68 0.75 0.77 0.76 131 (149) 1.81± 0.70 81 1.10

The high values of the accuracy for low values ofthresholdc and the large num-
ber of rules per diagnosis indicate overfitting of the learned knowledge. This is of
course domain dependent, and therefore the expert needs to tune the threshold care-
fully. With greater values forthresholdc less rules are generated, since only strong
dependencies are taken into account. Ifthresholdc is too high, i.e., if too many rules
are pruned, this obviously degrades the accuracy of the learned scores. In our experi-
ments this occurs forthresholdc = 0.6, for which the accuracy decreases significantly
in comparison tothresholdc = 0.5. Furthermore, the number of rules per diagno-
sis (MR) is reduced considerably without decreasing the accuracy (ACC) significantly
from thresholdc = 0.2 to thresholdc = 0.5. Analogously, the number of applied find-
ings (AF) is reduced with an increasing value ofthresholdc but a decreasing accuracy.
Column SC indicates that the number of applied confirmation categories is reduced by
an increasedthresholdc, i.e., simpler scoring rules are learned.

These findings are also reflected in the unifying quality measure. It is obvious, that
the balance between the scores’ accuracy and simplicity depends on the generalization
parameterγ. QM1 has a stronger increase fromthresholdc = 0.6 to thresholdc = 0.7
thanQM5 since the size of the score, i.e., the number of rules has a higher impact.This
depends on the priorities of the user: Ifγ = 1, then we have a strong bias favoring
minimal scores, one rule per diagnosis in the best case. Ifγ is set to higher values,
then we generalize this, such that the accuracy is more important. This can be seen in
experimentE1 for γ = 10 considering thresholds0.5, 0.6, and0.7 where the increased
score simplicity is balanced by the decrease in score accuracy. In the case of such a
plateau, the user either has to consult the detailed quality measures to trade-off accuracy
vs. simplicity, or can tune the quality measure with respect to the parameterα, i.e., the
weighting factor which trades-off simplicity vs. accuracy. Then, either a clear cut-off
point is found, where the quality measure has a maximum value, or the appropriate cut-
off point has to be selected from a limited number of options, in the case of a plateau,
i.e., a set of equal values.



6 Conclusion

We presented a semi-automatic learning method for simple diagnostic scoring rules
with appropriate quality measures. These focus on the understandability, i.e., simplicity.
An unifying measure also takes the accuracy of the learned knowledge into account.
This measure allows for a first quick evaluation of the learned patterns. The measure can
be fine-tuned guided by the user’s expectations and goals. This is especially important
in the context of semi-automatic learning methods, which can be refined incrementally
taking different amounts of background knowledge into account. As an example of
such a semi-automatic approach, we outlined a method for learning simple diagnostic
scores, and presented an evaluation of the proposed methods using a case base from a
real-world application. This demonstrated the applicability of the presented simplicity
measures and the unifying quality measure balancing simplicity and accuracy aspects.

In the future, we are planning to apply the measures on other rule-based patterns,
such as subgroups. Additionally, interpretation and evaluation of the learned knowl-
edge together with the proposed quality measures by medical experts should further
demonstrate the significance of these measures.
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