
Submitted for Track 2 Knowledge Management
Klaus Prätor
Berlin-Brandenburg Academy of Sciences and the Humanities
Jägerstr. 22-23, 10117 Berlin
praetor@bbaw.de

Logic for Critical Editions
The application of declarative programming in the field of critical or scientific
editions is to be seen in the larger frame of publication and, as we deal with
electronic editions, in the context of Web and mark-up languages. But critical
editions own specific attributes and difficulties. My aim is to show that
techniques of logic programming are especially apt for the structures and
problems of this domain.

Characteristics of critical editions
Critical editions are notoriously difficult sorts of text, as they form not one
linear text but rather a complex of different variants and readings of a text,
which are to be handled within a critical apparatus (think of a set of foot- or
endnotes). They are enriched by commentaries with historical and
philological information and made accessible by indices and directories.
Other peculiarities are the mostly large extent of the editions and the fact
that the period of production as well as of usage is very long reaching from
decades to centuries. Especially in electronic editions it is necessary to care
for sustainable availability and usability.
Some problems are due to the print form. Lack of space leads to elaborate
systems of abbreviations and to steady considerations, which material and
information can still be incorporated and which one has to be left out. The
print can hardly handle the inherent nonlinearity of the documents and of
course there is no thought of adaptation to different situations of usage.
Compared to the print form electronic editions show some advantages, which
result from the advanced ways of navigation and retrieval and from the
possibility to provide different types of output. The larger storage capacities
provide room for additional information regarding e.g. involved persons or
historical circumstances. Hypertext capacities facilitate the constitution of
temporal, spatial or thematic relations. Different editions may be nested and
entirely new information spaces may be created in this way.

Pilot project Jean Paul
The Berlin-Brandenburg Academy of Sciences and Humanities is the home of
thirty edition projects of all ages - editions in a broader sense including
aside from work editions also source editions and dictionaries. Most of them
are still focussed on the print form, but we are working on the migration to
genuine electronic editions. As a pilot project we have chosen the

correspondence of Jean Paul, in the times of Goethe a much read and
appreciated author of novels. We had two aims: to produce an electronic
equivalent of the just finished first volume of the letters to Jean Paul and to
demonstrate in an enriched selection some additional features of an
electronic edition.

To give an impression of the tasks and problems of the edition we look at a
tiny part of the letter: the footnote number (3) on the right side within the
commentary. It is not very important, may be only a habit from print times.
On the surface there is this digit 3. One layer deeper, which is in this
example the XML-Code to be envisioned by the browser, it looks like this:

• presentation layer (XML)
<note id="3">Buchhändlerisch: Remittenden.</note>

• + style sheet (CSS)
note:before {content:attr(id);font-weight:bold;
display:block; padding-top:10pt;padding-bottom:10pt;}

Here the number is no entity of its own, but only the value of an attribute,
and it is displayed by a very special feature of CSS, which places some text
before the respective tag, in our case the content is taken from the tag’s
attribute id. For a number of reasons this layer is not the one which will be
the basis of the edition. Maybe we change our mind and want to display the
commentary as a pop up. This should always be possible, especially
regarding the long timeframe, in which a critical edition should be usable.
Therefore there is a more fundamental layer :

• archive layer (XML)

<notep><pg>202</pg>6<jpzit>Krebse]</jpzit
> Buchhändlerisch: Remittenden.</notep>

This code is the one, which will be archived and function as basis for the
production of different presentation layers. At this level the footnote number
does not exist at all. Instead we see tagged references to page and line of the
print version as well as the lemma (Krebse) to which the commentary refers.
Both may be important, if reference to the print version is necessary. The
archive layer preserves all information, which may be helpful in some case,
and omits all presentation specific features. Unfortunately this is not the last
layer. The archive layer is the product of
a transformation of this sort of HTML-Code.

• migration layer (HTML)
<p style="margin-top:0;margin-bottom:0;">202, 6
Krebse] Buchhändlerisch:
Remittenden.</p>

This step is necessary, as the edition is originally produced with MS-Word, a
not at all desirable choice as an editor’s tool, but just legacy.

• source text (Word)
202,6 Krebse] Buchhändlerisch: Remittenden.

So finally we have come to the starting point. This Word version is converted
by a commercial tool to the migration layer in HTML., simply because this is
to handle more easily and consistently. The next two steps are obviously
done by some sort of program. The main aim of the transformation from the
migration to the archive layer is to strip off unnecessary graphical mark up
and to transform layout mark up which transports meaning into explicit
XML-Tagging. This is a task which has to be done just once. Not so the next
step from archive to presentation layer. Different users or situations may
demand different presentations. It would therefore be nice, if this transition
could be done very easily. On the other hand, it is not quite trivial, as also in
our simple example we have to sort out not needed tags, to separate and
number the notes and to care for proper linking. In other words: a perfect
task for declarative programming.
Declarative programming for critical editions
So it is not astonishing that there already exists a mainstream solution with
declarative character: XSL, or more specifically XSLT (Extended Style sheet
Language for Transformation). XSL was meant as an advanced sort of CSS,
but after some work the developers realized that they had created a tool for
the transformation of mark up. The real formatting tool was delivered
afterwards as XSL-FO. The way XSLT works resembles remarkably the way of

PROLOG. The transformation is done by traversal of a tree, testing the
matching of nodes against patterns in the style sheet.
Why not do it with logic programming? Richard O’Keefe has formulated the
answer in this manner:

“My own experience is that having PROLOG, Scheme and Haskell
available it’ll take a gun pointed at my head or an extremely large bribe
to make me use XSLT for anything.”

Of course the mainstream character and the extent of support are arguments
in favour of XSLT, but there are also some drawbacks. Firstly XSLT is not a
universal programming language, which means that not all problems are
solvable within this framework. Secondly XSLT is not designed from ground
up as a declarative language. In simple examples this is not easily visible, but
as applications get more complex you see the barely disguised imperative
background shining through in control structures (xsl:if, xsl:for-each etc.)
and pattern matching. A comparison of XSLT and PROLOG is to be found on
the SWI-Pages [4]. There is also some repulsion of XSLT in the literature (cf.
[3]).1

Anyway, it makes sense to give PROLOG a try, and the first success is to see
how seamlessly a XML-document converts into a genuine PROLOG structure.
Essentially each XML (also HTML)-tag can be represented in a triple of
tagname, attribute list and content (possibly also a list or empty). The rest is
nesting. Meanwhile there are some libraries available to support this sort of
transformation in both directions. As far as I know the first was the initally
for HTML designed Pillow from M. Hermenegildo (TH Madrid) [2], which does
also some cgi- and http-support and which was used in our project. A
hypertext reference takes the form of
a([href=’link address’],”link text”),
where the attributelist can be omitted if empty,
which is equivalent to and internally represented as
env(a, [href=’link address’],”link text”).
An alternative with similar functionality but somewhat more theoretically
refined is the field notation by D. Seipel (Uni Würzburg).) [5]. A triple is here
by means of operator definition represented in the form
tag:attributelist:content,
where attributelist is an associative list of attribute-value-pairs in the form
a:v. The PROLOG-library FnPath goes beyond the pure transformation by
providing additional means to select and handle substructures, comparable
to XML Query or F-logic.
Further to mention is a library xml.pl, which is delivered with the actual
version of Sicstus and which provides also a (simple) matching of
substructures aside from the conversion of XML to PROLOG terms and vice
versa.

1 Partially this critique is directed generally against declarative programming,
but my impression is that the authors are only acquainted with the XSLT-
style of it.

It is intended to test these alternatives in the future course of the project.
Meanwhile these things are not handled so systematically but rather in an ad
hoc manner. The basic structure of the transformation is simple: With the
help of the Pillow library the xml-code is transformed to PROLOG-Terms. A
few lines of code suffice to traverse the document tree, essentially and within
the frame of our purposes the function of an XSLT-processor. The equivalent
of the style sheet itself are predicates of the form
umf(Path,env(TagOld,AttLOld,ContOld),env(TagNew,AttLNew,ContNew))
.
In the case a Term matches the TripleOld, and of course all capacities of the
PROLOG unification can be used to do this matching, it will be replaced with
the TripleNew. Path stores the tags above the current structure and may be
used for further narrowing of the unification. In many cases a fact of this
form will be enough, to change, delete or add content or attributes just as
you like.
But sometimes it won’t do and in these cases the facts can be substituted by
whatever complicated complicated rules. Our example of the tiny footnote
number is such an example. Aside from doing the numbering and the
splitting of the notes the interesting feature is the use of grammar. It cannot
be seen from our one example, but the structure of the commentaries has
some variation. The lemma may be one word or some or a range of words.
Also page and lines may be single numbers or ranges. This type of variance
is very well handled by grammars.
umf(Pfad,env(notep,AttL,[env(pg,AttL2,Cont)|Rest]),''):-

tagflag([69,114,108,228,117,116,101,114,117,110,103,101,110]),!,
retract(note_count(N)),
O is N + 1,
assert(note_count(O)),
number_chars(O,OChs),
number_atom(O,OA),
phrase(stellKomm(stelle(PageCh,LineCh,LemmaList),Inhalt),[env(pg,AttL,
Cont)|Rest],Inhalt),
atom_chars(Page,PageCh),
atom_chars(Line,LineCh),
jpd(First),
cat(DatN,First,[3,3]),
DatN=[Jpk,Num,Ext],
cat(['jp',Num,'n',OA,Ext],NDatN,_),
cat(['out/',NDatN],PfadDatN,_),
assert(quer_verw(Page,Line,NDatN)),
one(vorspann(Vorspann)),
one(xml2terms(Vorspann,VorTerms)),
tell(PfadDatN),
one(output_html([VorTerms,env(note,[id=OA, pg=Page, ln=Line],Inhalt)])),
told.

stellKomm(stelle(Page,Line,[Lemma1,Lemma2]),Inhalt) -->

page(Page),line(Line),page(Page2),line(Line2),lemma(Lemma1),
bis,lemma(Lemma2).

stellKomm(stelle(Page,Line,[Lemma]),Inhalt) -->
page(Page),line(Line),page(Pag2e),line(Line2),lemma(Lemma).

stellKomm(stelle(Page,Line,[Lemma1,Lemma2]),Inhalt) -->
page(Page),line(Line),lemma(Lemma1),bis,lemma(Lemma2).

stellKomm(stelle(Page,Line,[Lemma]),Inhalt) -->
page(Page),line(Line),lemma(Lemma.

page(Page) --> [env(pg,_,[RawPage])],{
append(Page,[44|_],RawPage)}.

line(Line) --> [Line].
lemma(Lemma) --> [env(jpzit,_,[Lemma])].
bis --> [[32,98,105,115,32]].
bis --> [[98,105,115,32]].
rest([I1,I2]) --> cont(I1),rest(I2).
rest(env(jpzit,[],Inhalt)) --> env(jpzit,[],Inhalt).
cont(Inhalt) --> [Inhalt].

Those are the moments, I prefer to have available the full capabilities of a
universal declarative language like PROLOG – and I assume they are the same
O’Keefe thought of, when he spoke of the gun pointed to his head.

Topology and navigation
It was already indicated above, that logic programming is used for two
different tasks within the generation of the critical edition: the
transformation of the original text into the archive layer format and then to
convert this into the presentation layer. The latter is not to be confounded
with the graphical surface. This is to be stressed, as it is opposed to the pure
dogma of XML, which distinguishes only a level of content from a level of
graphical presentation. I wholeheartedly agree that this distinction is to be
made. The ideological part is the opinion that there exists one level of
content independent of different users and user interests. The presentation
layer is not meant as the graphical surface, which is primarily produced by
the style sheet and the browser, but as an organisation of the content with
regard to different user interests. Not the only but a very important task in
this context is navigation. I suggest to distinguish between topology and
navigation with reference to a document. Whereas topology refers to the
potential connections of document nodes, navigation means the realised and
used connection paths. You can use public transport as a metaphor, where
the streets or waterways would provide the topology, whereas the de facto
offered connections correspond to the navigation.
In accordance with this convention, the providing of the topology would be
part of the archive layer whereas the presentation has to care for the
navigation. That means also while topology being a matter of conceptual and
structural relations, navigation has also to take into account social aspects of
user interaction as well as technical and aesthetic aspects of the realisation.

If we focus on the letters to Jean Paul, a navigation with the main access over
years or correspondence partners could be designed like this

Obviously we could conceive a lot of other user interests and corresponding
ways of access: e.g.

• a portrayal of person and work of Jean Paul
• literary correspondences about 1800
• poets in the times of classicism and romanticism.

We might meet new contents in these examples, e.g. biographies or
illustrative material, but primarily we need new and specific ways of access,
which would mean for example a navigation not centred around one person,
when giving a picture of the correspondences or the poets of the time. But all
of these navigations could be produced from the one archive layer, or better:
the archive layer should be designed in a way that multiple navigations can
be produced with little effort.2

The information from the document, even in its tagged archive format, is not
enough to produce the navigation. We need meta information, in our
example at least on the place, date and author of the letters. This
information is kept in a relational table and here again it is very comfortable
that PROLOG handles these as an own genuine structure. Derived from these
are as well the headlines of the letters as the different directories of persons,
years and places, which provide access to the content. You may see the
presentation layer as a virtual layer on top of documents and meta
information.

2 Navigation is not the only thing, the presentation layer is responsible for.
Part of his tasks is also providing different formats and media of output.

Nonetheless the handling of meta data is at the moment a rather modest
matter in our project. Next step will be to incorporate meta information in
RDF and so to get nearer to the semantic Web. Without doubt this is a very
interesting and important development for the future of critical editions,
even if we don’t know what exactly the impact will look like. But one thing is
sure: As RDF is a format which must be supplemented by a separate means
for inference,3 PROLOG (and companions) will be our favourite also in this
field.

Literature
[1] Dan Brickley, Enabling Inference
(http://www.mozilla.org/rdf/doc/inference.html)

3 Examples of logic programming tools and libraries for RDF are to be found for example
with SWI-PROLOG and with the Mozilla-project [1]

[2] Daniel Cabeza, Manuel Hermenegildo, WWW Programming using
Computational Logic Systems

[3] Michael Leventhal, XSL Considered Harmful,
www.xml.com/pub/a/1999/05/xsl/xslconsidered_1.html

 [4] Bijan Parsia, Long story about using SWI-PROLOG RDF and HTML
infrastructure, esp. Ch. 6: DCGs Compared to XSLT
 (http://www.xml.com/pub/a/2001/07/25/prologrdf.html)
[5] Dietmar Seipel, Processing XML-Documents in PROLOG
 [will be completed]

